

Project Report No. 494

Optimum N rate and timing for semi-dwarf oilseed rape

by P. M. Berry¹, S. Clarke² and S. Roques³

ADAS High Mowthorpe, Duggleby, Malton, North Yorkshire YO17 8BP
 ADAS Gleadthorpe, Meden Vale, Mansfield, Nottinghamshire NG20 9PF
 ADAS Boxworth, Boxworth, Cambridge, Cambridgeshire CB23 4NN

This is the final report of a 23 month project (RD-2008-3578) which started in February 2009. The work was funded by a contract of £53,200 from HGCA and contributions from GrowHow UK Ltd (£47,600) and Bayer Ltd (£13,100), making a total of £113,900.

While the Agriculture and Horticulture Development Board, operating through its HGCA division, seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law, the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document.

Reference herein to trade names and proprietary products without stating that they are protected does not imply that they may be regarded as unprotected and thus free for general use. No endorsement of named products is intended, nor is any criticism implied of other alternative, but unnamed, products.

HGCA is the cereals and oilseeds division of the Agriculture and Horticulture Development Board.

CONTENTS

1.	ABSTRACT							
2.	SUM	MARY	6					
	2.1.	Introduction	6					
	2.1.1.	Aim and objectives	7					
	2.2.	Materials and methods	7					
	2.2.1.	Canopy management approach	7					
	2.2.2.	Field experiments	8					
	2.2.3.	Measurements	9					
	2.2.4.	Calculations and statistics	9					
	2.3.	Results	9					
	2.3.1.	Economic optimum N rate	9					
	2.3.2.	Canopy management	10					
	2.3.3.	Crop biomass, N uptake and N residues following harvest	14					
	2.3.4.	Folicur	15					
	2.4.	Conclusions	17					
3.	TECI	HNICAL DETAIL	18					
	3.1.	Introduction	18					
	3.1.1.	Aim and objectives	19					
	3.2.	Experimental design, materials and methods	20					
	3.2.1.	Canopy Management approach	20					
	3.2.2.	Field experiments	21					
	3.2.3.	Measurements	22					
	3.2.4.	Calculations and Statistics	22					
	3.3.	Results	23					
	3.3.1.	Experiment Year 1 – 2008/9	23					
	3.3.2.	Experiment Year 2 – 2009/10	79					
	3.4.	Discussion	131					
	3.4.1.	Economic optimum N rate	131					
	3.4.2.	Canopy management	131					

	3.4.3.	Crop biomass, N uptake and N residues following harvest	135
	3.4.4.	Folicur	136
	3.5.	Conclusions	138
4.	REFE	RENCES	139
APP	ENDIX	1. SITE DETAILS 2008/9	140
APP	ENDIX	2. SITE DETAILS 2009/10	143

1. ABSTRACT

This project compared a semi-dwarf variety (PR45D03) with a standard height variety (Excalibur) to investigate whether:

- a semi-dwarf variety has a different economically optimum nitrogen (N) rate and different optimum N timings,
- ii) 'Canopy Management' principles apply for a semi-dwarf variety,
- iii) there are any differences in the N residues following harvest, and
- iv) a semi-dwarf responds differently to a PGR.

Three winter oilseed rape experiments were established in each of the 2008-09 and 2009-10 growing seasons near ADAS sites High Mowthorpe (N. Yorkshire), Rosemaund (Herefordshire) and Terrington (Norfolk). The hybrid varieties PR45D03 and Excalibur were tested at six or seven N rates applied at Conventional or Canopy Management timings, with or without Folicur.

Results showed that, despite being, on average, 33 cm shorter the semi-dwarf variety required the same amount of fertiliser N to achieve optimum yield. Several of the Canopy Management principles were shown to be the same for the semi-dwarf and standard height varieties including; a crop N uptake of 50 kg N/ha to build each unit of green area index (GAI), a similar target optimum GAI at flowering and the same N uptake efficiencies. Shorter stems did not affect the amount of N required to build each unit of GAI because lower stem biomass at flowering was compensated by a greater concentration of N in the stem.

The semi-dwarf variety produced similar sized yields to Excalibur, and by harvest there were no significant differences in the amount of N taken up by the crop and the amount of N taken off in the seed between the variety types. The semi-dwarf variety had an average stem biomass of 3.75 t/ha compared with 4.52 t/ha for Excalibur, and a greater N concentration in the stem and pod wall tissue at two sites. As a result of these counteracting effects both the semi-dwarf and standard height variety left a similar amount of N in crop residues following harvest.

In the one experiment where the canopy following winter exceeded the minimum threshold GAI for using a PGR it was shown that Folicur applied at 1.0 I/ha at the green bud stage significantly increased the yield of the semi-dwarf variety. This indicates that semi-dwarfs will respond positively to PGRs when canopies are large. Folicur was shown to increase seeds/m² by increasing the amount of light that penetrated through the flowering layer.

2. SUMMARY

2.1. Introduction

Good yields, along with less lodging, easy management and swifter harvesting, make semi-dwarf oilseed rape varieties an attractive option for many growers. The semi-dwarfs developed so far have been around 20 cm shorter than Castille which, in turn, is about 25 cm shorter than the tallest hybrid (Excel). It is not known whether semi-dwarfs have a different requirement for fertiliser N compared with taller varieties, nor is it known whether the optimum N timings are different. However, two alternative hypotheses may be proposed: 1) the lower lodging risk of semi-dwarfs means that yields continue to respond to greater amounts of N, resulting in a greater economic optimum N rate; or 2) potentially lower stem biomass means that less N is required for supporting tissue, thereby reducing the N optima.

It is also unknown as to whether semi-dwarf varieties will benefit from the application of 'Canopy Management' principles of N timings and rates that aim to achieve optimum sized canopies. These principles have been shown to increase yield over conventional practices in standard height varieties in situations where they would have produced an over-large canopy (Berry and Spink, 2009). Over-large canopies have been shown to both set fewer seeds/m² and to be more lodging prone. In a recent study (Sustainable Arable LINK project LK0979), a semi-dwarf variety had a similar green area index in early spring to standard height varieties, indicating that this variety type may have a similar potential for producing over-large canopies by flowering.

This project aims to understand the physiological basis that determines whether semi-dwarf varieties have a different optimum rate and timing of N fertiliser. This will be used to understand whether the Canopy Management principals can be used with semi-dwarfs. The N use efficiency of a semi-dwarf is also compared with a standard height variety and also whether a different amount of N is returned to the soil (due to fewer crop residues). The latter will be important for determining whether the N requirement of following crops is different after a semi-dwarf oilseed rape crop.

2.1.1. Aim and objectives

Project Aim

Investigate whether semi-dwarf oilseed rape has a different optimum N rate and N timing from standard height varieties.

Specific Objectives

- 1. Investigate whether semi-dwarf oilseed rape has a different optimum N rate and N timing.
- 2. Understand whether the Canopy Management principals can be applied to Semi-dwarf varieties.
- Quantify the N use efficiency of semi-dwarfs and whether they leave different amounts of N in crop residues for following crops.
- 4. Assess the response of the semi-dwarf variety to the growth regulatory effects of Folicur and any interactions with N management.

2.2. Materials and methods

2.2.1. Canopy management approach

Previous HGCA-funded work has demonstrated that oilseed rape must achieve an optimum green area index (GAI) of 3.5 units at flowering and the crop must take up 50 kg N/ha to build each unit of GAI. This means that the crop must take up 175 kg N/ha to achieve the optimum GAI of 3.5. Canopy Management principles assume that any N that the crop has taken up by the end of winter remains in the crop until flowering and therefore contributes to the production of the optimum GAI. The principles also assume that oilseed rape takes up 100% of the soil mineral N measured in the soil in February and 60% of any fertiliser N applied (55% on shallow soils over chalk or limestone). These uptake efficiencies are similar to average figures that have been measured in wheat. The rate of crop N uptake is assumed to be 3 kg N per ha per day from the start of active spring growth until flowering. It was expected that crops with a higher than average yield potential will require additional N which should be applied between yellow bud and mid-flowering to avoid this additional N causing the optimum canopy size to be exceeded.

In early February, the amounts of N in the soil and crop were measured and this was used to calculate how much fertiliser N was required for the crop to achieve a GAI of 3.5 using the assumptions described above.

Example: In February the amount of N in the soil was 50 kg N/ha and the amount of N in the crop was 50 kg N/ha. It is assumed that by flowering the crop will contain all of this soil and crop N (100 kg N/ha). This means it will be 75 kg N/ha short of the amount required for the optimum GAI. At 60% efficiency, 125 kg of fertiliser N must be applied to make up this shortfall.

In general the fertiliser N required to achieve the optimum sized canopy was applied at the 2nd conventional split timing at the green bud stage (GS3,3 to 3,5) when the stems were just starting to extend. This usually occurred in late March or early April. A small proportion of the N was applied at the 1st conventional split timing (late February/early March) when it was calculated that there would be insufficient time (assuming an uptake of 3 kg/ha/day) for the crop to take up all of the N required to achieve an optimum sized canopy by mid flowering if the first application was delayed. Additional N for high yield potential was applied at yellow bud to mid flowering, equivalent to 60 kg N/ha for each tonne above 3.5 t/ha.

2.2.2. Field experiments

Sites

Experiments were carried out in 2008/9 and 2009/10. Experiments were drilled near ADAS Terrington in Norfolk (silty clay loam), near ADAS High Mowthorpe in 2008/09 (Shallow silty clay loam over chalk) or Thorneholme in 2009/10 (silty clay loam) both in E. Yorkshire and near ADAS Rosemaund in Herefordshire (sandy clay loam).

Experimental factors and design

Four factors were investigated: variety, N rate, N timing and a growth regulatory fungicide Folicur. At each site, within each of four replicates, variety formed main plots in which the N rate and N timing were randomised. At each site Folicur was then applied across one half of each block. The position of the Folicur strip was randomised for each block. This type of design is a special case of a split plot design where the sub-plot treatments are not randomised separately for each whole plot, but are randomly allocated to strips of subplots across each block. This is usually called a strip design or a criss-cross design. Each plot measured 18 m by 3.5 m.

The two varieties used were the standard height variety Excalibur and the semi-dwarf variety PR45D03, each drilled at 70 seeds/m². In 2008/9 seven N rates were used (0, 60, 120, 180, 240, 300, 360 kg/ha) and in 2009/10 six N rates were used which differed with site: 0, 60, 120, 180, 240 and 300 kg/ha at Thornholme and Rosemaund, and 0, 70, 140, 210, 280 and 350 at Terrington. All N was applied by hand as ammonium nitrate (34.5% N). All N rates, apart from the nil, were applied at either Conventional or Canopy Managed timings. Conventional timings were for 50% of the N applied in late February/March and 50% applied at green bud (GS3,3 to 3,5) (late March/early April). Canopy Management timings were for all, or the majority, of the N required to achieve the optimum sized canopy to be applied at the 2nd Conventional split timing (GS3,3 to 3,5) and the remaining N was applied between yellow bud and mid-flowering. The Folicur treatment was applied at late green bud (GS3,6). The rate of Folicur was dependent on the size of the crop

canopy measured in February. Crops with a GAI of less than 1 received 0.5 I/ha and crops with a GAI of 1 or more received a rate of 1.0 I/ha.

2.2.3. Measurements

Assessments included the amount of mineral N in the soil, together with the GAI and N content of the crop, in February. At flowering, the crop height, light interception/reflection, GAI, biomass and crop N content were measured. At crop maturity the biomass and N content of the stem, pod walls and seeds were measured. Lodging was assessed at regular intervals. Yield was determined for all treatments using a small plot combine from an area of at least 30m² and the moisture content measured. Oil content was measured in 2008/9.

2.2.4. Calculations and statistics

Analysis of variance procedures within Genstat 11 (www.genstat.com) were used to calculate whether treatments were significantly different. Linear plus exponential N response curves were fitted to the seed yield data. The economically optimum N rate was calculated using a breakeven ratio of 2.5. The gross margin over N costs was calculated by assuming a seed yield price of £235/t (9% moisture), ammonium nitrate containing 34.5% N costing £200/t (which were typical average prices during the project and these give a breakeven ratio of 2.5). The oil premium was calculated as 1.5% of the basic oilseed rape price for each percentage point that the oil content was above 40%.

2.3. Results

As expected PR45D03 was significantly shorter than Excalibur, with height reductions ranging from 13 to 46 cm, and averaging 33 cm, across the six experimental sites. At 240 kg N/ha, the average height of Excalibur was 134 cm compared with 101 cm for PR45D03.

2.3.1. Economic optimum N rate

There were no differences detected in the economically optimum N rate between Excalibur and PR45D03, due to Canopy Management or due to Folicur in any of the experiments. This was despite differences in the components of yield (seed size and seeds/m²) between the variety types. At Terrington and Rosemaund in 2008/9, PR45D03 produced significantly (P<0.001) more seeds than Excalibur (12% and 11% more seeds/m², respectively), and at all sites in 2008/9 and Thornholme in 2009/10 it had a significantly lower thousand seed weight, with reductions of 2.5% to 7.6% relative to Excalibur. The small seeds of PR45D03 indicate that higher yields could be achieved by providing better seed filling conditions. Seed yield (Summary Tables 1 and 2), total

biomass and total N uptake for the two variety types were similar and it is likely that these characteristics are more important for determining optimum N rate than differences in crop height.

2.3.2. Canopy management

In 2008/9, soil and crop N measured in February was low at all three sites (Summary Table 1). In 2009/10, although the canopies at all three sites were moderate to large before winter, they were reduced by the unusually cold winter weather. Consequently, the canopies measured in February were very small at Terrington and moderate at Thornholme and Rosemaund (Summary Table 2). Therefore, in all experiments the differences in N management between Conventional and Canopy Managed treatments were not as great as they have been in some previous experiments. When SNS is low, it is necessary to apply some early N for the Canopy Managed treatments to allow sufficient time for the crop to take up all the N required to build an optimum sized canopy. This means that the differences in N timing between the Canopy Managed treatments and the Conventionally managed treatments is smaller particularly at the lower N rate treatments.

In 2008/9 Canopy Management did not affect yield at any of the three sites (Summary Table 1). In February the canopies were small, and Canopy Management did not affect growth up to flowering. There was no evidence that over-large canopies were achieved at flowering with the Conventional N timings, with the largest canopy being at Rosemaund, with GAI 3.2. There were also no significant differences in light interception or reflection at flowering, between Canopy Managed and Conventional treatments in 2008/9. The observation that Canopy Management did not significantly reduce the yield of the semi-dwarf variety (Summary Table 1), even in crops with very small canopies, indicates that Canopy Management is appropriate for semi-dwarf varieties and may increase the yield of semi-dwarfs when canopies following winter are large.

In 2009/10, Canopy Management did not affect yield of either Excalibur or PR45D03 at any of the three sites (Summary Table 2). This season provided a robust test for the Canopy Management approach because the uptake of later Canopy Management N applications were delayed by the dry spring and the third N application was applied later than planned at Thornholme. N uptake by OSR crops has been shown to slow after flowering therefore there is a risk associated with applying N too late. At Thornholme the 3rd N split was applied when PR45D03 was beginning to flower and Excalibur was in full flower. At Rosemaund the crop was less advanced when the 3rd split was applied, but the application was preceded by several days of dry weather and followed by a further two weeks without rain, so much of the applied N may not have been available to the crop until well into flowering. However, at both sites the differences in final crop N content between the N timing treatments were not significant, and there was evidence of continued N uptake after flowering of up to 58 kg/ha in the the higher N rates applied at Canopy Managed timings.

Summary Table 1. 2008/9 experiment summary.

	Terring	Terrington		Mowthorpe		Rosemaund	
Jan/Feb soil mineral N (kg/ha)	34	34		34		26	
Jan/Feb additionally available N (kg/ha)	17		75		26	26	
Jan/Feb crop N content (kg/ha)	12		3		22	22	
Jan/Feb GAI	0.25		0.09		0.57		
N timing strategy	Conv	CM	Conv	CM	Conv	CM	
Optimum N rate (kg/ha)	253	253	244	244	209	209	
N rate at 1 st split (end Feb/early March)	126	60	122	60	104	60	
N rate at 2 nd split (early stem ext.)	125	155	122	184	105	149	
N rate at 3 rd split (yellow bud to mid flower)	0	38	0	0	0	0	
Yield at opt N Excalibur (t/ha)	4.19	4.04	4.58	4.45	5.21	5.22	
Yield at opt N Excalibur + Folicur (t/ha)	4.34	4.26	4.59	4.59	5.02	5.08	
Yield at opt N PR45D03 (t/ha)	4.25	4.20	4.30	4.26	5.59	5.53	
Yield at opt N PR45D03 + Folicur (t/ha)	4.34	4.34	4.28	4.27	5.04	5.05	

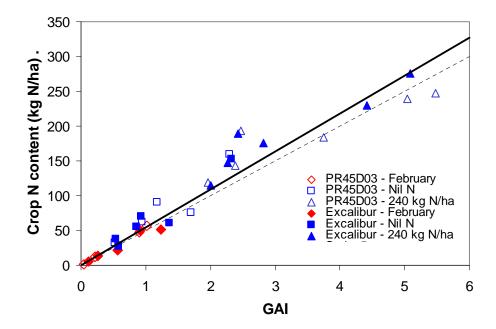
Conv – conventional N timing strategy; CM – Canopy Managed N timing strategy.

Additionally available N (AAN) is an estimate of the amount of N that will become available for crop uptake through mineralisation between February and crop maturity.

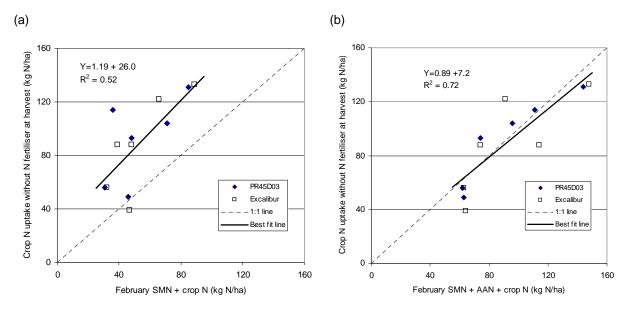
Summary Table 2. 2009/10 experiment summary.

Terring	jion	Thornholme		Rosemaund		
18		38	38		14	
31		59		25	25	
13		49		54	54	
0.24		0.9		1.12		
Conv	СМ	Conv	СМ	Conv	СМ	
228	228	215	215	176	176	
114	60	107	40	88	40	
114	168	108	107	88	136	
0	0	0	68	0	0	
3.47	3.47	4.98	4.85	4.78	4.98	
3.73	3.70	5.20	5.17	5.54	5.61	
3.50	3.64	5.00	5.07	4.89	4.78	
3.72	3.83	4.98	5.08	5.52	5.51	
	31 13 0.24 Conv 228 114 114 0 3.47 3.73 3.50	31 13 0.24 Conv CM 228 228 114 60 114 168 0 0 3.47 3.47 3.73 3.70 3.50 3.64	31 59 13 49 0.24 0.9 Conv CM Conv 228 228 215 114 60 107 114 168 108 0 0 0 3.47 3.47 4.98 3.73 3.70 5.20 3.50 3.64 5.00	31 59 13 49 0.24 0.9 Conv CM Conv CM 228 228 215 215 114 60 107 40 114 168 108 107 0 0 0 68 3.47 3.47 4.98 4.85 3.73 3.70 5.20 5.17 3.50 3.64 5.00 5.07	31 59 25 13 49 54 0.24 0.9 1.12 Conv CM Conv CM Conv 228 228 215 215 176 114 60 107 40 88 114 168 108 107 88 0 0 68 0 3.47 3.47 4.98 4.85 4.78 3.73 3.70 5.20 5.17 5.54 3.50 3.64 5.00 5.07 4.89	

Conv – conventional N timing strategy; CM – Canopy Managed N timing strategy.

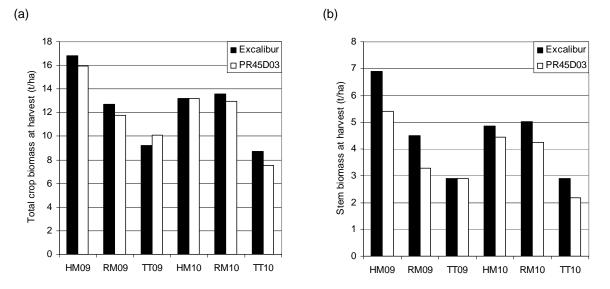

Additionally available N (AAN) is an estimate of the amount of N that will become available for crop uptake through mineralisation between February and crop maturity.

The only site at which over-large canopies were achieved at flowering in 2009/10 was Rosemaund, which averaged GAI 5.45 for the Conventional N timings (N rate 240 kg N/ha) compared to 4.70 for the Canopy Managed timings. Although the difference in GAI was not significant, Canopy Management did significantly reduce the amount of light intercepted by the flowers. This led to a small, but non-significant yield increase of 0.2 t/ha for Excalibur (Summary Table 2). At Thornholme there was a significant reduction in GAI and the amount of light intercepted and reflected by the canopy due to the Canopy Management strategy. These effects did not increase yield because the GAI for the Conventional N timings were less than the optimum. Importantly Canopy Management did not reduce yield. The small canopy at Terrington meant that the crop did not respond to Canopy Management.


Several components of the Canopy Management principles developed by Berry and Spink (2009) and Lunn et al. (2001) and used in the GrowHow 'N-Calc' fertiliser recommendation system were shown to be applicable for semi-dwarf varieties as described below. The requirement for the crop to take up 50 kg N/ha to build each unit of GAI was shown to hold true for both standard height and semi-dwarf hybrids (Summary Figure 1). At flowering PR45D03 produced a larger GAI than Excalibur at two sites with no differences at the other four sites. PR45D03 intercepted more light than Excalibur at one site, with no difference at the other sites. The relatively small differences in GAI and light interception between the varieties indicates that the optimum GAI for intercepting the majority of incoming light will be the same for both varieties. Across the six sites there were no significant differences for the efficiency with which the two varieties took up the soil mineral N (SMN) that was measured in February or the applied fertiliser N. There was a strong positive relationship between the amount of N taken up by the crop in the absence of fertiliser and the amount of SMN and crop N measured in February (Summary Figure 2a). It was apparent that the unfertilised crops generally took up more N than the combined SMN plus crop N measured in February. On average the crops took up an additional 36 kg N/ha. Previous research has shown that the amount of N taken up by unfertilised crops was similar to the amount of SMN plus crop N (Berry and Spink, 2009). The difference between these two studies is likely to have been caused by the experimental sites in this current study having soils with a greater potential for mineralisation between February and crop maturity. When an estimate of the amount of mineralisation (referred to as additionally available N – AAN) was added to the February SMN and crop N, then the prediction of the amount of N taken up by the unfertilised crops was improved (Summary Figure 2b). The fertiliser uptake efficiency was calculated for the 240 kg N/ha fertiliser rate by dividing the difference in crop N uptake at crop maturity between the unfertilised crop and the crop fertilised at 240 kg N/ha by the fertiliser rate. This showed that across the six sites there was no significant difference in fertiliser uptake efficiency between the variety types and the average uptake efficiency was 47%. The fertiliser uptake efficiency was lower than found by Berry and Spink (2009) who estimated an average uptake efficiency of 57% at the N rates closest to the economic optimum N

rate (average of 169 kg N/ha). There are two possible reasons for this difference; 1) in this study the N uptake efficiency was calculated for 240 kg N/ha which was, on average, 19 kg N/ha greater than the economic optimum N rate, and it is known that N uptake efficiency decreases at higher N rates, 2) the very dry spring in 2010 reduced N uptake efficiency. The average uptake efficiency in 2010 was 41% compared with 53% in 2009.

This report indicates that both the standard height and semi-dwarf variety types take up N with similar rates of efficiency, require the same amount of N to build each unit of GAI and have a similar optimum GAI target. This indicates that both variety types will require the same amount of fertiliser to achieve optimum GAI and supports the observation that there was no difference in the economic N rates between the variety types (Summary Tables 1 and 2).


Summary Figure 1. The relationship between Crop N content (kg N/ha) and Green Area Index (GAI) of varieties PR45D03 and Excalibur when measured in February and at mid flowering (Nil N and 240 kg N/ha) in the growing seasons 2008/9 and 2009/10. The bold line is the fitted relationship and the dotted line is the expected relationship (1 unit GAI = 50 kg N/ha).

Summary Figure 2. Relationship between a) February SMN + crop N and the amount of N taken up by unfertilised crops by harvest and b) February SMN + additionally available N (due to mineralisation) + crop N and the amount of N taken up by unfertilised crops by harvest. Data from each of the 6 experiments carried out within the study.

2.3.3. Crop biomass, N uptake and N residues following harvest

At harvest there was no significant difference in total crop biomass measured at 240 kg N/ha between Excalibur and PR45D03 at any of the sites (Summary Figure 3). Across all sites the average crop biomass for Excalibur was 12.4 t/ha compared with 11.9 t/ha for PR45D03. PR45D03 had an average stem biomass of 3.75 t/ha which was significantly less than Excalibur at 4.52 t/ha (Summary Figure 3b). The reduction in stem biomass was less than may have been expected given that the height of PR45D03 was on average 33 cm (25%) shorter. Longer branches from the bottom of the semi-dwarf main stems may have partially compensated for the shorter main stems. There was no significant difference in the biomass of the pod walls with both varieties averaging 4.01 t/ha across the six sites.

Summary Figure 3. a) Total biomass at harvest; b) stem biomass at harvest. All measurements for the 240 kg N/ha treatment without Folicur. HM – High Mowthorpe, RM – Rosemaund, TT – Terrington.

There was no difference between Excalibur and PR45D03 in the total amount of N taken up by the crop at harvest, with both varieties taking up on average 202 kg N/ha at a fertiliser rate of 240 kg N/ha across the six sites. PR45D03 took off 10 kg/ha less N in the seed at High Mowthorpe in 2008/9, but there were no variety differences in N offtake in the seed at any of the other five experiments. On average, both varieties took off 123 kg N/ha in the seed and both left a similar amount of N in the crop residues of approximately 75 kg N/ha. At two sites the stem and pod residues of PR45D03 had a significantly greater tissue N concentration than Exalibur which compensated for the lower stem biomass in terms of the N residues following harvest. These results indicate that the N residues following semi-dwarf oilseed rape are not different from those of standard height varieties.

2.3.4. Folicur

Effects of Folicur differed between the two seasons. In 2008/9 Folicur at 0.5 I/ha increased yield of both Excalibur and PR45D03, on average, by 0.15 t/ha at Terrington but did not affect yield at High Mowthorpe, and reduced the yield of PR45D03 by 0.51 t/ha and the yield of Excalibur by 0.16 t/ha at Rosemaund. In contrast, in 2009/10, Folicur application significantly increased yield at all three sites, by an average of 0.22 t/ha at Terrington, 0.67 t/ha at Rosemaund, and at Thornholme it increased the yield of Excalibur by 0.27 t/ha and had no effect on PR45D03. It should be recognised that all experimental sites, apart from Rosemaund in 2009/10, had a GAI in January/February of less than one (the threshold above which spring PGRs are normally recommended). In 2008/9 the average GAI in January/February across the three sites was 0.30 and in 2009/10 the average GAI was 0.75. The greater GAI in 2009/10 helps to explain the greater

yield increases in this season. The yield responses to Folicur were not affected by the use of Canopy Managed N timings compared with Conventional N timings.

The greatest yield response to Folicur was at Rosemaund in 2009/10. This effect was likely to be because this site had the largest GAI in January/February (1.12) and at flowering (4.7 to 5.5) which was significanty above the optimum GAI required at flowering of 3.5. The significant yield increase for PR45D03 at this site indicates that semi-dwarfs will respond positively to PGRs when canopies are large. The most likely mechanism for the yield increases was the significant reduction in light reflection from the flowers that was caused by Folicur. This would have allowed more light to reach the photosynthetic tissues, thereby allowing more photosythesis during the critical period when the number of seeds were set. Folicur also reduced the amount of leaning at Rosemaund, particularly in Excalibur, although the relatively low levels of leaning which occurred were not likely to have influenced yield significantly. It is worth noting that this reduction in leaning occurred in the absence of any height response to Folicur, at Rosemaund or at the other sites in 2009/10, which indicates that Folicur may have reduced leaning by affecting the architecture of the canopy.

Disease was minimised in all experiments by using fungicides without PGR activity. However, it is impossible to rule out the possibility that part of the yield increases from Folicur were through improved disease control.

The yield reduction following Folicur application at Rosemaund in 2008/9, was likely to have occurred because even without the PGR the GAI at flowering was below the optimum for yield, and Folicur reduced this yet further causing a reduction in light interception by the green tissues during the seed setting period and consequently reduced yield. This hypothesis is supported by the observation that the reduction in yield was due to a reduction in seed number, rather than seed size. It should be noted that the GAI at the start of stem extension was 0.57 and PGRs would not normally be recommended for crops with a GAI of less than 1.

In five of the six experiments, Folicur treatment reduced the fraction of light intercepted by the flowers and/or reduced the amount of light reflected by the flowers of the standard height and semi-dwarf varieties. This shows that Folicur reduced the size of the flower layer, which for overlarge canopies will help the crop set more seeds/m². This study has shown semi-dwarfs have the potential to produce over-large canopies which indicates that they will respond positively to PGRs in particular conditions.

2.4. Conclusions

- Across the six experiments the semi-dwarf variety PR45D03 had an avarge height of 101 cm compared with 134 cm for Excalibur.
- It was shown that Excalibur and PR45D03 had the same economic optimum N rates and produced similar yields.
- Canopy Management N timings gave the same yield as earlier Conventional N timings for the semi-dwarf and standard height varieties.
- Similar to standard height varieties, semi-dwarfs were shown to also have the potential to
 produce over-large canopies at flowering which would reduce the number of seeds set and yield
 potential. This indicates that Canopy Management N timings could increase the yield of semidwarfs when they have canopies following winter that are at risk to becoming over-large.
- It was shown that the Canopy Management principles used for standard height varieties also apply for semi-dwarf varieties. These include a similar soil and fertiliser uptake efficiency, the crop must take up 50 kg N/ha to build each unit of GAI and a similar optimum GAI at flowering.
- The experiments provided further evidence that the Canopy Management approach has been successfully adapted for crops with small canopies following winter, such that there is no yield penalty from delaying some of the N until yellow bud / early flowering.
- The semi-dwarf variety took up a similar amount of N and contained a similar amount of N in the seed to the standard height variety. There is therefore no evidence that the N residues remaining after harvest differ for semi-dwarfs.
- There was no difference in N use efficiency (kg of seed per kg of available soil and fertiliser N) between the semi-dwarf and standard height variety as both varieties yielded similarly at a range of N rates including the economic optimum rate.
- The prediction of the soil N supply (SNS) from the February soil mineral N plus crop N was improved by adding an estimate of the amount of N mineralised after February that would be available for crop uptake. This mineralisable fraction of soil N is known as the additionall available N (AAN).
- At harvest, the overall biomass of PR45D03 averaged 11.9 t/ha compared to 12.4 t/ha for Excalibur. This difference was not statistically significant.
- In the one experiment where an over-large canopy was produced it was shown that Folicur significantly increased the yield of the semi-dwarf variety, which indicates that semi-dwarfs will respond positively to PGRs when canopies are large.
- Folicur was shown to increase seeds/m² by increasing the amount of light that penetrated through the flowering layer.
- There may be an opportunity to maximise yields of PR45D03 by focusing on seed filling conditions. PR45D03 generally produced higher seed numbers than Excalibur, but lower seed weight.

3. TECHNICAL DETAIL

3.1. Introduction

Several breeding companies are developing semi-dwarf oilseed rape varieties and some of these have already featured on the HGCA Recommended Lists (RL). The yields of semi-dwarf varieties have been catching up the standard height variety yields and are now only slightly less and sometimes on a par. In the 2011/12 oilseed rape RL (East and West region) the highest yielding semi-dwarf cultivar (DK-Sequoia) had a yield of 101% of the control varieties. This along with the perceived ease of harvesting makes semi-dwarf varieties an attractive option for many growers. The semi-dwarfs developed so far have been around 20 cm shorter than Castille which, in turn, is about 25 cm shorter than the tallest hybrid (Excel). It is not known whether semi-dwarfs have a different requirement for fertiliser N compared with taller varieties, nor is it known whether the optimum N timings are different.

Ongoing LINK project LK0979 'Breeding for a reduced N requirement in oilseed rape' showed the semi-dwarf variety PR45D01 had a lower stem biomass than 'standard' height varieties at two out of four sites. This may indicate that the semi-dwarf variety has a lower requirement for N. On the other hand the semi-dwarfs have a lower lodging risk which may indicate that N can be pushed higher to increase yield.

Since 2005/6 HGCA and Growhow UK Ltd have been testing a 'Canopy Management' method of N timings which involves applying sufficient N to build a canopy size of 3.5 by flowering, then applying additional amounts of N at yellow bud or early flowering depending on the crop's yield potential. Compared with a conventional approach of applying N before and during early stem extension, this approach has been shown to increase yield on crops with a large canopy coming out of the winter. The mechanism of yield increase has been shown to be reduced lodging and the production of an optimum sized canopy at flowering which allowed more light to penetrate through the flower layer to the photosynthetic tissue in order to stimulate greater seed set. Semi-dwarfs have a lower lodging risk which may indicate that they will not benefit from lodging reductions due to Canopy Management. However, LINK project LK0979 showed that the semi-dwarf PR45D01 had a similar sized canopy in early spring to 'standard height' varieties. This may indicate that the semi-dwarfs are just as prone as other varieties to developing over-large canopies when crop management and environmental conditions are favourable for rapid growth, and may therefore benefit from Canopy Management timings. Research is also required to understand whether semidwarfs require 50 kg N/ha to build each unit of GAI the same as standard varieties and whether a GAI of 3.5 by flowering is optimal for light interception. It is possible that the shorter stem affects how much N is required to build each unit of GAI and the amount of light intercepted.

This project aims to understand the physiological basis that determines whether semi-dwarf varieties have a different optimum rate and timing of N fertiliser. This will be used to understand whether the Canopy Management principals can be used with semi-dwarfs. It will also help to predict the optimum N rate and timing for semi-dwarfs grown in different environments and for different types of semi-dwarfs when they enter the market (e.g. shorter dwarfs). The N use efficiency of semi-dwarfs is also compared with standard height varieties and also whether a different amount of N is returned to the soil (due to fewer crop residues). The latter will be important for determining whether the N requirement of following crops is different after a semi-dwarf oilseed rape crop.

3.1.1. Aim and objectives

Project Aim

Investigate whether semi-dwarf oilseed rape has a different optimum N rate and N timing from standard height varieties.

Specific Objectives

- 1. Investigate whether semi-dwarf oilseed rape has a different optimum N rate and N timing.
- Understand whether the Canopy Management principals can be applied to semi-dwarf varieties.
- Quantify the N use efficiency of semi-dwarfs and whether they leave different amounts of N in crop residues for following crops.
- Assess the response of the semi-dwarf variety to the growth regulatory effects of Folicur and any interactions with N management.

3.2. Experimental design, materials and methods

3.2.1. Canopy Management approach

Previous work has demonstrated that oilseed rape must achieve an optimum green area index (GAI) of 3.5 units at flowering (Lunn *et al.*, 2001). Larger canopies set fewer seeds/m² and are more prone to lodging, whilst smaller canopies do not intercept all of the available light. It has been shown that the crop must take up 50 kg N/ha to build each unit of GAI (Lunn *et al.*, 2001), which means that the crop must take up 175 kg N/ha to achieve the optimum GAI of 3.5. It was assumed that any N that the crop had taken up by the end of winter remained in the crop until flowering and therefore contributed to the production of the optimum GAI. It was assumed that oilseed rape took up 100% of the soil mineral N measured in the soil in January/February and 60% of any fertiliser N applied (55% on shallow soils over chalk or limestone). These uptake efficiencies are similar to average figures that have been measured in wheat. The rate of crop N uptake was assumed to be 3 kg N per day (Schjoerring *et al.*, 1995). It was expected that crops with a higher than average yield potential will require additional N which should be applied between yellow bud and midflowering in order to minimise the chance of producing an over-large canopy at flowering.

In late January or early February, the amount of N in the soil and crop were measured and this was used to calculate how much fertiliser N was required for the crop to achieve a GAI of 3.5 using the assumptions described above.

Example: In February the amount of N in the soil was 50 kg N/ha and the amount of N in the crop was 50 kg N/ha. It is assumed that by flowering the crop will contain all of this soil and crop N (100 kg N/ha). This means it will be 75 kg N/ha short of the amount required for the optimum GAI. 125 kg of fertiliser N must be applied to make up this shortfall assuming 60% of the fertiliser N applied is taken up by the crop.

The amount of fertiliser N required to achieve the optimum sized canopy was applied at the 2nd conventional split timing at green bud stage (GS3,3 to 3,5) when the stems were just starting to extend. This usually occurred in late March or early April. A small proportion of the N was applied at the 1st conventional split timing (late February/early March) if it was calculated that there would be insufficient time for the crop to take up all of the N required to achieve an optimum sized canopy by mid flowering if the first application was made at the 2nd conventional split timing. Additional N for high yield potential was applied at yellow bud to mid flowering, equivalent to 60 kg N/ha for each tonne above 3.5 t/ha.

3.2.2. Field experiments

Sites

Experiments were carried out in 2008/9 and 2009/10. Experiments were drilled near ADAS Terrington in Norfolk (silty clay loam), near ADAS High Mowthorpe in 2008/09 (Shallow silty clay loam over chalk) or Thorneholme in 2009/10 (silty clay loam) both in E. Yorkshire and near ADAS Rosemaund in Herefordshire (sandy clay loam).

Experimental factors and design

Four factors were investigated: variety, N rate, N timing and a growth regulatory fungicide Folicur. At each site, within each of four replicates, variety formed main plots in which the N rate and N timing were randomised. At each site Folicur was then applied across one half of each block. The position of the Folicur strip was randomised for each block. This type of design is a special case of a split plot design where the sub-plot treatments are not randomised separately for each whole plot, but are randomly allocated to strips of subplots across each block. This is usually called a strip design or a criss-cross design. Each plot measured 18 m by 3.5 m.

The two varieties used were the standard height variety Excalibur and the semi-dwarf variety PR45D03. In 2008/9 seven N rates were used (0, 60, 120, 180, 240, 300, 360 kg/ha) and in 2009/10 six N rates were used which differed with site: 0, 60, 120, 180, 240 and 300 kg/ha at Thornholme and Rosemaund, and 0, 70, 140, 210, 280 and 350 at Terrington. All N was applied as ammonium nitrate (34.5% N). All N rates, apart from the nil, were applied at either conventional or Canopy Managed timings. Conventional timings were for 50% of the N applied in late February/March and 50% applied at green bud (GS3,3 to 3,5) at around the start of stem extension (late March/early April). Canopy Management timings were for all, or the majority, of the N required to achieve the optimum sized canopy to be applied at the 2nd conventional split timing (start of stem extension) and the remaining N was applied between yellow bud and mid-flowering. The Folicur treatment was applied at green bud. The rate of Folicur was dependent on the size of the crop canopy measured in February. Crops with a GAI of less than 1 received 0.5 I/ha and crops with a GAI of 1 or more received a rate of 1.0 I/ha.

Husbandry

All crops were sown at 70 seeds/m². Adequate Sulphur was ensured by applying 75 kg/ha SO₃ as Magnesium Sulphate (Kieserite) to all treatments at the same time as the first N split was applied to the conventional N treatments. Fungicides without growth regulatory activity were used to minimise disease and to help ensure that any effects of the Folicur treatment resulted from growth regulation rather than disease control. Pests were minimised using molluscicides and insecticides. Desiccants were not used. See appendices 1 and 2 for further site details.

3.2.3. Measurements

Assessments included the amount of mineral N in the soil, together with the GAI and N content of the crop, in February. At flowering, the crop height, light interception/reflection, GAI, biomass and crop N content were measured. At crop maturity the biomass and N content of the stem, pod walls and seeds were measured. Lodging was assessed at regular intervals. Many of the physiological measurements were carried out on a subset of the treatments. Yield was determined for all treatments using a small plot combine from an area of at least 30m² and the moisture content measured. Oil content was measured in 2008/9.

3.2.4. Calculations and Statistics

Analysis of variance procedures within Genstat 11 (www.genstat.com) were used to calculate whether treatments were significantly different. Linear plus exponential N response curves were fitted to the seed yield data for each treatment of the form:

$$Y = A + BR^{N} + CN$$
 Equation 1

where Y is the seed yield (t/ha), A, B, C and R are constants. Each linear plus exponential function was fitted using a stepwise process within Genstat 11 involving the following steps: i) fitting a common curve to all fungicide treatments, ii) fitting separate parallel curves for each fungicide treatment, iii) fitting separate curves for each fungicide treatment by allowing parameters A, B and C all to vary, and iv) fitting separate curves for each fungicide treatments by allowing all parameters to vary. The sums of squares explained at each stage was calculated, and a test was made of the improvement in fit over the previous model. If there was no significant improvement between two stages, then the previous model was taken as the best description of the data. In general, fitting at stage (ii) was most satisfactory and the economic N rate (N_{OPT}) was determined from the fitted linear plus exponential parameters as follows:

$$N_{OPT} = \frac{\left[\ln(k/1000 - C) - \ln(B(\ln R))\right]}{\ln R}$$
 Equation 2

where k is the breakeven price ratio between fertiliser N (p/kg) and grain (p/kg). A breakeven ratio of 2.5 was used in this study because this is used as a standard for fertiliser recommendations (Anon., 2010). The yield at the optimum N rate (Y_{OPT}) was calculated from the fitted parameters using equation 1.

The gross margin over N costs was calculated by assuming a seed yield price of £235/t (9% moisture), ammonium nitrate containing 34.5% N costing £200/t (which were typical average prices during the project and these give a breakeven ratio of 2.5). In 2008/9, the oil premium was calculated as 1.5% of the basic oilseed rape price for each percentage point that the oil content was above 40%. When the oil content was less than 40% the same formula was used to calculate the price penalty from the basic oilseed rape price of £235/t.

3.3. Results

3.3.1. Experiment Year 1 – 2008/9

Soil and crop N in February

Experiments were drilled near ADAS Terrington (Norfolk) on 30/09/08, near ADAS High Mowthorpe (N. Yorkshire) on 26/09/08 and near ADAS Rosemaund (Herefordshire) on 15/9/08. The soil mineral N and GAI of the experimental crops was measured in late January or early February. A summary of this information (Table 1) shows that the combined supply of N from the crop and soil in February was 46 kg N/ha at Terrington, 48 kg N/ha at Rosemaund and 37 kg N/ha at High Mowthorpe.

Table 1. Fertiliser requirement for canopy managed treatments

	Terrington	High Mowthorpe	Rosemaund
SMN (kg/ha)	34	34	26
AAN (kg/ha)	17	75	26
GAI	0.25	0.09	0.57
Crop N (kg/ha)	12	3	22
SNS (kg/ha)	46	37	48
Fort N for CAL 2 F	215	251	212
Fert N for GAI 3.5	(60 at 1 st split)	(60 at 1 st split)	(60 at 1 st split)

SMN – soil mineral nitrogen; AAN – Additionally available N through mineralisation after February; SNS – soil nitrogen supply - sum of SMN and crop N; GAI – green area index

N treatments

The amount of fertiliser N required to achieve the optimum GAI of 3.5 by flowering was calculated at 215 kg/ha at Terrington, 212 kg/ha at Rosemaund and 251 kg/ha at High Mowthorpe based on the measurements of soil and crop N. At all the sites it was estimated that the crop would not be able to take up all of the N required to acheve the optimum sized canopy by mid-flowering if the N applications were delayed until the 2nd conventional split timing (green bud - GS3,3 to 3,5). Therefore, 60 kg N/ha was applied at the 1st conventional split timing. After sufficient N had been applied to achieve the optimum GAI of 3.5 the remainder of the N was applied between yellow bud and early/mid flowering in late April/early May. The N applications in each split are described in Tables 2 to 4. The dates of the N applications and Folicur treatment are described in Table 5.

Table 2. Terrington N applications (kg/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	60	0	0	60
9	Managed	60	60	0	120
10	Managed	60	120	0	180
11	Managed	60	150	30	240
12	Managed	60	150	90	300
13	Managed	60	150	150	360

Table 3. High Mowthorpe N applications (kg/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	60	0	0	60
9	Managed	60	60	0	120
10	Managed	60	120	0	180
11	Managed	60	180	0	240
12	Managed	60	190	50	300
13	Managed	60	190	110	360

24

Table 4. Rosemaund N applications (kg/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Conventional	180	180	0	360
8	Managed	60	0	0	60
9	Managed	60	60	0	120
10	Managed	60	120	0	180
11	Managed	60	150	30	240
12	Managed	60	150	90	300
13	Managed	60	150	150	360

Table 5. Timings of Nitrogen and Folicur treatments

	Terrington	High Mowthorpe	Rosemaund
1 st N timing	09-11/03/09	11-12/03/09	25/02/09
2 nd N timing	03/04/09	09/04/09	20/03/09
3 rd N timing	15/04/09	12/05/09	08/04/09
Folicur timing	14/04/09	23/04/09	04/04/09
	(0.5 l/ha)	(0.5 l/ha)	(0.5 l/ha)

Seed yield

At Terrington, nitrogen rate and Folicur treatment significantly affected yield, with Folicur application increasing yield by an average of 0.15 t/ha (Table 6). Averaged over all treatments, yields significantly increased with each level of N from nil N (1.23 t/ha) to 180 kg N/ha (3.97 t/ha). Further increases were found up to 300 kg N/ha (4.26 t/ha), although these differences were not significant. There were no significant effects of variety or Canopy Management.

At High Mowthorpe, nitrogen rate and variety significantly affected yield, with Excalibur yielding on average 0.27 t/ha more than PR45D03 (Table 7). Averaged over all treatments, yields significantly increased with each level of N from nil N (2.11 t/ha) to 300 kg N/ha (4.57 t/ha). There was also a significant interaction between variety and nitrogen rate, with PR45D03 needing more N to reach its maximum yield. There were no significant effects of Folicur or Canopy Management.

At Rosemaund, nitrogen rate, variety and Folicur treatment significantly affected yield. The Folicur and variety treatments interacted such that Folicur significantly reduced the yield of PR45D03 by 0.51 t/ha and the yield of Excalibur by 0.16 t/ha (Table 8). Unlike at High Mowthorpe, PR45D03 was the higher yielding variety, yielding on average 0.17 t/ha more than Excalibur. Averaged over all treatments, yields significantly increased with each level of N from nil N (2.68 t/ha) to 180 kg N/ha (5.08 t/ha). There were no significant effects of Canopy Management.

Table 6. Terrington seed yields (t/ha @ 9% mc)

Variety	N	No Fol	cur		Folicur ((0.5 l/ha)		Conv	СМ	Grand
	rate kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Excalibur	0	0.95		0.95	1.37		1.37	1.16		1.16
Excalibur	60	2.23	2.05	2.14	2.65	2.27	2.46	2.44	2.16	2.30
Excalibur	120	3.21	3.10	3.15	3.40	3.22	3.31	3.31	3.16	3.23
Excalibur	180	4.02	3.82	3.92	3.95	4.19	4.07	3.99	4.00	4.00
Excalibur	240	4.08	3.93	4.00	4.15	4.19	4.17	4.11	4.06	4.09
Excalibur	300	4.12	4.33	4.22	4.28	4.16	4.22	4.20	4.24	4.22
Excalibur	360	4.53	3.93	4.23	4.42	4.22	4.32	4.48	4.07	4.28
Excalibur	Mean	3.31	3.16	3.23	3.46	3.37	3.42	3.38	3.27	3.32
PR45D03	0	1.37		1.37	1.24		1.24	1.30		1.30
PR45D03	60	2.46	2.06	2.26	2.36	2.79	2.58	2.41	2.42	2.42
PR45D03	120	3.32	3.49	3.41	3.44	3.22	3.33	3.38	3.36	3.37
PR45D03	180	3.87	3.72	3.79	4.05	4.13	4.09	3.96	3.92	3.94
PR45D03	240	4.14	4.27	4.21	4.31	4.20	4.26	4.22	4.24	4.23
PR45D03	300	4.24	4.22	4.23	4.26	4.43	4.35	4.25	4.32	4.29
PR45D03	360	4.16	4.06	4.11	4.54	4.20	4.37	4.35	4.13	4.24
PR45D03	Mean	3.37	3.31	3.34	3.46	3.46	3.46	3.41	3.39	3.40
Exc+D03	0	1.16		1.16	1.30		1.30	1.23		1.23
Exc+D03	60	2.35	2.05	2.20	2.50	2.53	2.52	2.43	2.29	2.36
Exc+D03	120	3.27	3.30	3.28	3.42	3.22	3.32	3.34	3.26	3.30
Exc+D03	180	3.95	3.77	3.86	4.00	4.16	4.08	3.97	3.96	3.97
Exc+D03	240	4.11	4.10	4.10	4.23	4.20	4.21	4.17	4.15	4.16
Exc+D03	300	4.18	4.27	4.23	4.27	4.29	4.28	4.23	4.28	4.26
Exc+D03	360	4.35	3.99	4.17	4.48	4.21	4.35	4.42	4.10	4.26
Exc+D03	Mean	3.34	3.23	3.29	3.46	3.42	3.44	3.40	3.33	3.36
Treatment			df	SED	F pr.					
Folicur			165	0.0540	0.006					
Variety			165	0.0540	0.167					
N manage	ment		165	0.0540	0.182					
N rate			165	0.1010	< 0.001					
Fol x Var			165	0.0763	0.527					
Fol x Man			165	0.0763	0.575					
Var x Man			165		0.400					
				0.0763						
Fol x Nrate			165	0.1428	0.834					
Var x Nrate			165	0.1428	0.904					
Man x Nra			165	0.1428	0.615					
Fol x Var x			165	0.1080	0.966					
Fol x Var x	Nrate		165	0.2020	0.559					
Fol x Man	x Nrate		165	0.2020	0.783					
Var x Man	x Nrate		165	0.2020	0.985					
Fol x Var x	Man x N	lrate .	165	0.2856	0.402					

Table 7. High Mowthorpe seed yields (t/ha @ 9% mc)

Variety	N rate	No Foli	cur		Folicur	(0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Excalibur	0	2.23		2.23	2.24		2.24	2.24		2.24
Excalibur	60	3.14	3.20	3.17	3.50	3.31	3.40	3.32	3.25	3.29
Excalibur	120	3.79	3.97	3.88	3.73	3.86	3.80	3.76	3.92	3.84
Excalibur	180	4.38	4.40	4.39	4.34	4.31	4.33	4.36	4.36	4.36
Excalibur	240	4.30	4.67	4.48	4.74	4.70	4.72	4.52	4.69	4.60
Excalibur	300	4.58	4.58	4.58	4.72	4.73	4.72	4.65	4.65	4.65
Excalibur	360	4.48	4.73	4.60	4.63	4.72	4.67	4.55	4.72	4.64
Excalibur	Mean	3.84	3.97	3.91	3.98	3.98	3.98	3.91	3.97	3.94
PR45D03	0	1.94		1.94	2.04		2.04	1.99		1.99
PR45D03	60	3.03	3.00	3.02	2.84	2.86	2.85	2.93	2.93	2.93
PR45D03	120	3.52	3.85	3.69	3.59	3.64	3.61	3.55	3.74	3.65
PR45D03	180	3.96	4.07	4.02	3.87	4.04	3.95	3.91	4.06	3.98
PR45D03	240	4.13	4.09	4.11	4.19	4.11	4.15	4.16	4.10	4.13
PR45D03	300	4.49	4.44	4.47	4.53	4.53	4.53	4.51	4.48	4.50
PR45D03	360	4.45	4.43	4.44	4.57	4.47	4.52	4.51	4.45	4.48
PR45D03	Mean	3.65	3.69	3.67	3.66	3.67	3.67	3.65	3.68	3.67
Exc+D03	0	2.09		2.09	2.14		2.14	2.11		2.11
Exc+D03	60	3.09	3.10	3.09	3.17	3.08	3.12	3.13	3.09	3.11
Exc+D03	120	3.66	3.91	3.78	3.66	3.75	3.71	3.66	3.83	3.74
Exc+D03	180	4.17	4.24	4.20	4.10	4.18	4.14	4.14	4.21	4.17
Exc+D03	240	4.22	4.38	4.30	4.46	4.41	4.44	4.34	4.39	4.37
Exc+D03	300	4.54	4.51	4.52	4.62	4.63	4.63	4.58	4.57	4.57
Exc+D03	360	4.47	4.58	4.52	4.60	4.60	4.60	4.53	4.59	4.56
Exc+D03	Mean	3.75	3.83	3.79	3.82	3.83	3.82	3.78	3.83	3.81
Treatment			df	SED	F pr.					
Folicur			165	0.0289	0.203					
Variety			165	0.0289	< 0.001					
N manage	ment		165	0.0289	0.135					
N rate			165	0.0540	<0.001					
Fol x Var			165	0.0408	0.169					
Fol x Man			165	0.0408	0.109					
Var x Man			165	0.0408	0.548					
Fol x Nrate			165	0.0764	0.355					
Var x Nrate		165	0.0764	0.020						
Man x Nra	te		165	0.0764	0.560					
Fol x Var x	Man		165	0.0578	0.421					
Fol x Var x Nrate		165	0.1080	0.292						
Fol x Man	x Nrate		165	0.1080	0.879					
Var x Man	x Nrate		165	0.1080	0.509					
Fol x Var x		Irate	165	0.1528	0.862					
I OI A VAI A	IVICIT A I	ii alc	100	0.1020	0.002					

Table 8. Rosemaund seed yields (t/ha @ 9% mc)

Variety	N rate	No Fol	icur		Folicur 0	.5 l/ha)		Conv	СМ	Grand
•	kg/ha	Conv	СМ	Mean	Conv	CM	Mean	Mean	Mean	Mean
		-			-			11.00		
Excalibur	0	2.76		2.76	2.60		2.60	2.68		2.68
Excalibur	60	4.06	3.87	3.96	3.80	3.92	3.86	3.93	3.90	3.91
Excalibur	120	4.86	4.84	4.85	4.56	4.46	4.51	4.71	4.65	4.68
Excalibur	180	5.13	5.19	5.16	4.93	5.06	4.99	5.03	5.13	5.08
Excalibur	240	5.16	5.19	5.17	5.12	5.17	5.15	5.14	5.18	5.16
Excalibur	300	5.28	5.33	5.31	5.22	5.31	5.26	5.25	5.32	5.28
Excalibur	360	5.39	5.57	5.48	5.10	5.26	5.18	5.25	5.41	5.33
Excalibur	Mean	4.66	4.68	4.67	4.47	4.54	4.51	4.57	4.61	4.59
PR45D03	0	3.03		3.03	2.61		2.61	2.82		2.82
PR45D03	60	4.64	4.31	4.47	3.83	3.88	3.85	4.23	4.09	4.16
PR45D03	120	5.02	4.97	5.00	4.57	4.74	4.66	4.80	4.85	4.83
PR45D03	180	5.51	5.51	5.51	4.96	4.95	4.96	5.24	5.23	5.23
PR45D03	240	5.58	5.47	5.53	5.11	5.17	5.14	5.34	5.32	5.33
PR45D03	300	5.82	5.77	5.80	5.17	5.16	5.17	5.50	5.47	5.48
PR45D03	360	5.74	5.84	5.79	5.25	5.06	5.15	5.50	5.45	5.47
PR45D03	Mean	5.05	4.99	5.02	4.50	4.51	4.50	4.77	4.75	4.76
Exc+D03	0	2.90		2.90	2.60		2.60	2.75		2.75
Exc+D03	60	4.35	4.09	4.22	3.81	3.90	3.86	4.08	3.99	4.04
Exc+D03	120	4.94	4.91	4.92	4.57	4.60	4.58	4.75	4.75	4.75
Exc+D03	180	5.32	5.35	5.33	4.95	5.00	4.97	5.13	5.18	5.15
Exc+D03	240	5.37	5.33	5.35	5.11	5.17	5.14	5.24	5.25	5.25
Exc+D03	300	5.55	5.55	5.55	5.19	5.24	5.21	5.37	5.40	5.38
Exc+D03	360	5.57	5.70	5.64	5.18	5.16	5.17	5.37	5.43	5.40
Exc+D03	Mean	4.86	4.83	4.84	4.49	4.52	4.51	4.67	4.68	4.68
Treatment			df	SED	F pr.					
Folicur			165	0.0570	< 0.001					
Variety			165	0.0570	0.003					
N managen	nent		165	0.0570	0.901					
N rate			165	0.1067	< 0.001					
Fol x Var			165	0.0806	0.003					
Fol x Man			165	0.0806	0.595					
Var x Man			165	0.0806	0.556					
Fol x Nrate			165	0.1509	0.951					
Var x Nrate			165	0.1509	0.998					
Man x Nrate		165	0.1509	0.997						
Fol x Var x Man		165	0.1141	0.924						
Fol x Var x Nrate			165	0.2134	0.880					
Fol x Man x	Nrate		165	0.2134	0.959					
Var x Man x Nrate			165	0.2134	0.994					
		ıte	165	0.3018	0.997					
Fol x Var x Man x Nrate				2.00.0						

Oil content

At Terrington, oil content significantly decreased with increasing N rate (Table 9). Linear regressions showed a significant 0.77% decrease in oil content with every 100kg increase in N rate. Folicur did not affect oil content (Table 10), nor were there any significant interactions between Folicur and any other factor.

At High Mowthorpe, oil content significantly decreased with increasing N rate (Table 11). Linear regressions showed a significant 0.86% decrease in oil content with every 100kg increase in N rate. Folicur did not affect oil content (Table 12), nor were there any significant interactions between Folicur and any other factor.

At Rosemaund, oil content significantly decreased with increasing N rate (Table 13). Linear regressions showed a significant 0.87% decrease in oil content with every 100kg increase in N rate. Folicur did not affect oil content (Table 14), nor were there any significant interactions between Folicur and any other factor.

Table 9. Terrington oil contents (100% dry matter)

N rate	Excalib	our		PR45D	03		Conv	СМ	Grand
kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
0	47.0		47.0	48.1		48.1	47.6		47.6
120	48.7	46.9	47.8	47.8	47.2	47.5	48.3	47.1	47.7
240	45.5	46.1	45.8	45.7	45.7	45.7	45.6	45.9	45.7
360	45.7	45.1	45.4	44.8	44.9	44.9	45.3	45.0	45.1
Mean	46.7	46.3	46.5	46.6	46.5	46.5	46.7	46.4	46.5
Treatment			df	SED	F pr.				
Variety				45	0.274	0.794			
N mana	gement			45	0.274	0.285			
N rate				45	0.388	<0.001			
Variety	x Manag	ement		45	0.388	0.579			
Variety	Variety x N rate			45	0.548	0.155			
Management x N rate			45	0.548	0.268				
Var x Ma	an x Nra	te		45	0.775	0.675			

Without Folicur

Table 10. Terrington Oil contents (100% dry matter) effects of Folicur

N rate	Conven	tional	Managed	d timing	Mean	Mean		
kg/ha	Nil	Folicur	Nil	Folicur	Nil	Folicur		
Excalibur 120	48.7	47.7	46.9	47.5	47.8	47.6		
Excalibur 240	45.5	46.7	46.1	46.0	45.8	46.4		
PR45D03 120	47.8	48.0	47.2	47.7	47.5	47.8		
PR45D03 240	45.7	46.2	45.7	45.9	45.7	46.0		
Mean	46.9	47.1	46.5	46.8	46.7	46.9		
	df	SED	F pr.					
Folicur	45	0.231	0.292					
Variety	45	0.231	0.620					
Management	45	0.231	0.088					
N rate	45	0.231	< 0.001					
Fol x Var	45	0.327	0.799					
Fol x Man	45	0.327	0.840					
Var x Man	45	0.327	0.639					
Fol x Nrate	45	0.327	0.357					
Var x Nrate	45	0.327	0.678					
Man x Nrate	45	0.327	0.197					
Fol x Var x Man	45	0.463	0.904					
Fol x Var x Nrate	45	0.463	0.371					
Fol x Man x Nrate	45	0.463	0.067					
Var x Man x Nrate	45	0.463	0.462					
Fol x Var x Man x Nrate	e 45	0.655	0.236					

Table 11. High Mowthorpe oil contents (100% dry matter)

N rate	Excalib	nır		PR45D	003		Conv	CM	Grand		
			Mean			Moon	Mean	Mean			
kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	iviean	Mean	Mean		
0	45.9		45.9	45.3		45.3	45.6		45.6		
120	45.9	45.7	45.8	45.9	46.6	46.2	45.9	46.1	46.0		
240	42.1	43.6	42.9	45.3	44.6	45.0	43.7	44.1	43.9		
360	43.0	42.1	42.6	43.2	42.9	43.1	43.1	42.5	42.8		
Mean	44.2	44.3	44.3	44.9	44.8	44.9	44.6	44.6	44.6		
				•							
Treatme	ent			df	SED	F pr.					
Variety				45	0.317	0.063	63				
N mana	gement			45	0.317	0.984	0.984				
N rate				45	0.449	<0.001	001				
Variety >	k Manage	ement		45	0.449	0.799	0.799				
Variety >	k N rate			45	0.635	0.036	0.036				
Manage	Management x N rate			45	0.635	0.701					
Var x Ma	an x Nrat	е		45	0.898	0.297					
VACOL OF											

Without Folicur

Table 12. High Mowthorpe oil contents (% dry matter) effects of Folicur

N rate	Conventi	onal	Managed	l timing	Mean	
kg/ha	Nil	Folicur	Nil	Folicur	Nil	Folicur
Excalibur 120	45.9	45.5	45.7	45.2	45.8	45.3
Excalibur 240	42.1	42.9	43.6	42.6	42.9	42.7
PR45D03 120	45.9	45.4	46.6	45.8	46.2	45.6
PR45D03 240	45.3	44.4	44.6	43.3	45.0	43.8
Mean	44.8	44.6	45.1	44.2	45.0	44.4
	df	SED	F pr.			
Folicur	45	0.424	0.175			
Variety	45	0.424	0.027			
Management	45	0.424	0.959			
N rate	45	0.424	< 0.001			
Fol x Var	45	0.600	0.479			
Fol x Man	45	0.600	0.435			
Var x Man	45	0.600	0.698			
Fol x Nrate	45	0.600	0.913			
Var x Nrate	45	0.600	0.158			
Man x Nrate	45	0.600	0.753			
Fol x Var x Man	45	0.849	0.709			
Fol x Var x Nrate	45	0.849	0.634			
Fol x Man x Nrate	45	0.849	0.583			
Var x Man x Nrate	45	0.849	0.189			
Fol x Var x Man x Nrate	45	1.200	0.604			

Table 13. Rosemaund oil contents (100% dry matter)

N rate	Excalib	our		PR45D	03		Conv	СМ	Grand		
kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean		
0	45.4		45.4	46.0		46.0	45.7		45.7		
120	44.4	44.7	44.6	44.9	44.5	44.7	44.6	44.6	44.6		
240	43.2	43.1	43.2	43.0	43.4	43.2	43.1	43.2	43.2		
360	42.3	42.6	42.4	42.8	43.0	42.9	42.5	42.8	42.7		
Mean	43.8	44.0	43.9	44.2	44.2	44.2	44.0	44.1	44.0		
Treatme	ent			df	SED	F pr.					
Variety				45	0.211	0.170	170				
N mana	gement			45	0.211	0.658					
N rate				45	0.298	<0.001	<0.001				
Variety >	k Manage	ement		45	0.298	0.791	0.791				
Variety x N rate			45	0.421	0.772						
Management x N rate			45	0.421	0.963						
Var x Ma	an x Nrat	е		45	0.596	0.811					

Without Folicur

Table 14. Rosemaund oil contents (100% dry matter) effects of Folicur

N rate	Conventi	onal	Managed	l timing	Mean	
kg/ha	Nil	Folicur	Nil	Folicur	Nil	Folicur
Excalibur 120	44.4	45.1	44.7	45.2	44.6	45.2
Excalibur 240	43.2	43.1	43.1	43.1	43.2	43.1
PR45D03 120	44.9	44.3	44.5	44.3	44.7	44.3
PR45D03 240	43.0	43.1	43.4	42.9	43.2	43.0
Mean	43.9	43.9	43.9	43.9	43.9	43.9
	df	SED	F pr.			
Folicur	45	0.1958	0.949			
Variety	45	0.1958	0.298			
Management	45	0.1958	0.975			
N rate	45	0.1958	< 0.001			
Fol x Var	45	0.2769	0.158			
Fol x Man	45	0.2769	0.824			
Var x Man	45	0.2769	0.751			
Fol x Nrate	45	0.2769	0.590			
Var x Nrate	45	0.2769	0.343			
Man x Nrate	45	0.2769	0.899			
Fol x Var x Man	45	0.3915	1.000			
Fol x Var x Nrate	45	0.3915	0.231			
Fol x Man x Nrate	45	0.3915	0.703			
Var x Man x Nrate	45	0.3915	0.467			
Fol x Var x Man x Nrate	45	0.5537	0.467			

Optimum N rates

At Terrington, regression analyses showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (88.5%) although this was not a significant improvement on fitting one curve for all the data (P=0.056), so one curve was fitted to all treatments. The economically optimum N rate before taking account of oil premiums was 257 kg N/ha for all treatments and 253 kg N/ha after taking account of the oil content (Table 15).

At High Mowthorpe, regression analyses showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (92.0%, P<0.001). The economically optimum N rate before taking account of oil premiums was 255 kg N/ha for all treatments and 244 kg N/ha after taking account of the oil content (Table 15).

At Rosemaund, regression analyses showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (83.6%, P<0.001). The economically optimum N rate before taking account of oil premiums was 223 kg N/ha for all treatments and 209 kg N/ha after taking account of the oil content (Table 15).

Table 15. Optimum N rate and yields at N opt.

		High	
	Terrington	Mowthorpe	Rosemaund
Economically optimum N rate (kg/ha)	253	244	209
Excalibur Conventional N timings	4.19	4.58	5.21
Excalibur Managed N timings	4.04	4.45	5.22
Excalibur Conventional N timings with Folicur	4.34	4.59	5.02
Excalibur Managed N timings with Folicur	4.26	4.59	5.08
PR45D03 Conventional N timings	4.25	4.30	5.59
PR45D03 Managed N timings	4.20	4.26	5.53
PR45D03 Conventional N timings with Folicur	4.34	4.28	5.04
PR45D03 Managed N timings with Folicur	4.34	4.27	5.05

Crop growth before stem extension

Crop assessments carried out in February before any N applications showed that the GAI, dry matter, N concentration and N content of the two varieties did not differ at Terrington or Rosemaund (Table 16). At High Mowthorpe, which had a much smaller crop than the other sites, Excalibur had significantly greater GAI, dry matter, N concentration and N content than the semi-dwarf PR45D03 (Table 16). Each unit of GAI contained 51.1 kg N/ha at Terrington, 42.0 kg N/ha at High Mowthorpe and 38.9 kg N/ha at Rosemaund. Previous studies have shown that oilseed rape crops contain about 50 kg N/ha per unit of GAI. However, it should be recognised that these N contents are for very small crops which is likely to increase the error associated with calculating the N content per unit GAI. There was no significant difference between the two varieties in crop kg N/ha per unit of GAI.

Table 16. February measurements.

Terrington

	CAL	Dry matter	N content (% of	Crop N
	GAI	(t/ha)	dry matter)	(kg/ha)
Excalibur	0.268	0.453	2.97	13.1
PR45D03	0.217	0.368	3.20	11.7
Mean	0.242	0.411	3.08	12.4
SED (df)	0.0765	0.1323	0.1476	3.99
F pr.	0.553	0.566	0.213	0.740

High Mowthorpe

	GAI	Dry matter	N content (% of	Crop N
	GAI	(t/ha)	dry matter)	(kg/ha)
Excalibur	0.119	0.115	4.35	4.99
PR45D03	0.044	0.046	4.04	1.88
Mean	0.082	0.080	4.19	3.43
SED (df)	0.0211	0.01574	0.0785	0.685
F pr.	0.038	0.023	0.031	0.020

Rosemaund

	CAL	Dry matter	N content (% of	Crop N
	GAI	(t/ha)	dry matter)	(kg/ha)
Excalibur	0.565	0.728	3.00	21.9
PR45D03	0.568	0.774	2.93	22.2
Mean	0.566	0.751	2.96	22.0
SED (df)	0.0348	0.774	0.1751	2.15
F pr.	0.952	0.446	0.697	0.914

GAI, dry weight and N content at mid-flowering

At all sites, increased N rates significantly increased the GAI of leaves and stems and the biomass and N content of all parts of the crop (Tables 17-25).

At Terrington, there were no significant effects of variety or Canopy Management on GAI (Table 17). The stem biomass data showed a significant interaction between variety and N rate; in nil N controls both varieties had very similar stem biomass, but at 240 kg N/ha Excalibur showed a much greater increase in stem biomass than PR45D03 (Table 18). The same trend was present for stem GAI, but the interaction was not significant.

The soil mineral N + crop N in February amounted to 46 kg N/ha at Terrington. In theory this would have been expected to be taken up into the crop by mid-flowering and to produce a GAI of 0.9 in

control plots. The measurements at Nil N showed that the crop had taken up 27.8 kg N/ha (Table 23) and achieved a GAI of 0.58 (Table 17). It is possible that a low plant population meant that the roots had not grown to a sufficient density to take up all of the soil N by flowering, or some soil N may have been leached. Applying 240 kg N/ha would be expected to increase N uptake by 144 kg N/ha and increase the GAI by 2.9 units. The measured increases were 114 kg N/ha and 1.4 GAI units.

At High Mowthorpe, PR45D03 had significantly higher total GAI than Excalibur, due to higher leaf GAI rather than stem GAI (Table 19). The leaf and total GAI data also showed a significant interaction between variety and N rate; PR45D03 showed a greater increase in GAI with increased N rate than Excalibur. Leaf biomass showed the same effects, again with a significant interaction (Table 20). Variety did not have a significant effect on stem GAI, but did affect stem biomass. Excalibur had higher stem biomass than PR45D03 at both N levels, and showed a greater increase in stem biomass in response to higher N.

The soil mineral N + crop N in February amounted to 37 kg N/ha at High Mowthorpe. In theory this would have been expected to be taken up into the crop by mid-flowering and to produce a GAI of 0.7 in control plots. The measurements at Nil N showed that the crop had taken up 35 kg N/ha (Table 24) and achieved a GAI of 0.53 (Table 19). Applying 240 kg N/ha would be expected to increase N uptake by 132 kg N/ha and increase the GAI by 2.6 units. The measured increases were 145 kg N/ha and 2.8 GAI units.

At Rosemaund, as at High Mowthorpe, Excalibur showed higher stem biomass and greater N response in stem biomass than PR45D03 (Table 22), but there were no varietal differences in stem GAI. PR45D03 had significantly higher leaf biomass and GAI than Excalibur, and consequently a higher total GAI (Table 21).

The soil mineral N + crop N in February amounted to 48 kg N/ha at Rosemaund. In theory this would have been expected to be taken up into the crop by mid-flowering and to produce a GAI of 1.0 in control plots. The measurements at Nil N showed that the crop had taken up 68 kg N/ha (Table 25) and achieved a GAI of 1.53 (Table 21). Applying 120 kg N/ha would be expected to increase N uptake by 144 kg N/ha and increase the GAI by 2.9 units. The measured increases were 170 kg N/ha and 3.4 GAI units

Across all sites, a comparison of crop N content and GAI supported the ratio derived from previous work, that approximately 50 kg N/ha is required to build each unit of GAI. With the means of each variety-N rate combination from each site plotted together (Figure 1), the regression equation gave an actual value of 50.4 kg N/ha for each unit GAI. However, there were significant differences

between the varieties in N content per unit GAI at both High Mowthorpe (P=0.026) and Rosemaund (P=0.032) (Tables 23-25). At both sites, PR45D03 used less N to build a unit of GAI or, since the N uptakes were more similar than GAIs, PR45D03 produced a greater GAI from the same amount of N uptake.

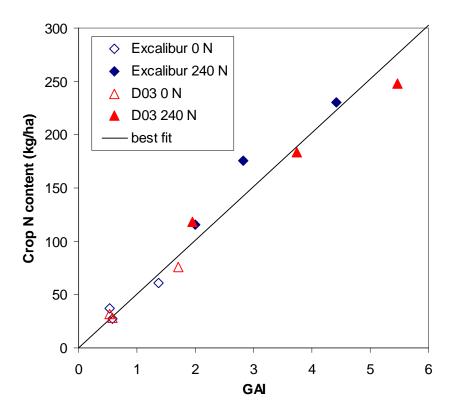


Figure 1. Comparison of GAI and crop N content, for all sites.

 Table 17. Terrington. Mid flowering green area indices.

Variety	N rate	GAI lea	aves		GAI ste	ems		Total G	SAI	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	СМ	Mean
Excalibur	0	0.329		0.329	0.248		0.248	0.577		0.577
Excalibur	240	1.499	1.409	1.454	0.595	0.505	0.550	2.094	1.914	2.004
Excalibur	Mean	0.914	0.869	0.892	0.421	0.376	0.399	1.335	1.245	1.290
PR45D03	0	0.328		0.328	0.250		0.250	0.578		0.578
PR45D03	240	1.653	1.380	1.516	0.517	0.367	0.442	2.170	1.747	1.959
PR45D03	Mean	0.990	0.854	0.922	0.383	0.309	0.346	1.374	1.162	1.268
Exc+D03	0	0.329		0.329	0.249		0.249	0.577		0.577
Exc+D03	240	1.576	1.395	1.485	0.556	0.436	0.496	2.132	1.830	1.981
Exc+D03	Mean	0.952	0.862	0.907	0.402	0.342	0.372	1.355	1.204	1.279
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	0.1119	0.788	21	0.0377	0.177	21	0.1357	0.871
N manager	ment	21	0.1119	0.427	21	0.0377	0.127	21	0.1357	0.280
Nrate		21	0.1119	<0.001	21	0.0377	<0.001	21	0.1357	< 0.001
Var x Man		21	0.1582	0.688	21	0.0533	0.695	21	0.1920	0.660
Var x Nrate)	21	0.1582	0.777	21	0.0533	0.161	21	0.1920	0.869
Man x Nrat	:e	21	0.1582	0.427	21	0.0533	0.127	21	0.1920	0.280
Var x Man	х	04	0.0000	0.600	24	0.0754	0.605	24	0.0745	0.000
Nrate		21	0.2238	0.688	21	0.0754	0.695	21	0.2715	0.660

 Table 18. Terrington. Mid flowering dry matter measurements.

Variety	N rate	Leaf bi	omass (t/	ha)	Stem b	iomass (t	/ha)	Flower	biomass	(t/ha)	Total b	iomass	(t/ha)
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	СМ	Mean
Excalibur	0	0.330		0.330	1.207		1.207	0.216		0.216	1.753		1.753
Excalibur	240	1.075	1.032	1.054	2.574	2.422	2.498	0.563	0.544	0.553	4.212	3.997	4.104
Excalibur	Mean	0.703	0.681	0.692	1.890	1.814	1.852	0.389	0.380	0.384	2.982	2.875	2.928
PR45D03	0	0.300		0.300	1.206		1.206	0.318		0.318	1.825		1.825
PR45D03	240	1.503	0.979	1.241	2.143	1.501	1.822	0.722	0.545	0.634	4.369	3.025	3.697
PR45D03	Mean	0.902	0.640	0.771	1.675	1.354	1.514	0.520	0.432	0.476	3.097	2.425	2.761
Exc+D03	0	0.315		0.315	1.206		1.206	0.267		0.267	1.789		1.789
Exc+D03	240	1.289	1.005	1.147	2.359	1.961	2.160	0.642	0.544	0.593	4.290	3.511	3.901
Exc+D03	Mean	0.802	0.660	0.731	1.782	1.584	1.683	0.455	0.406	0.430	3.039	2.650	2.845
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	0.0897	0.390	21	0.1540	0.040	21	0.0506	0.084	21	0.274	0.548
N manager	ment	21	0.0897	0.129	21	0.1540	0.211	21	0.0506	0.342	21	0.274	0.170
Nrate		21	0.0897	<0.001	21	0.1540	<0.001	21	0.0506	<0.001	21	0.274	<0.001
Var x Man		21	0.1268	0.195	21	0.2178	0.435	21	0.0715	0.442	21	0.388	0.315
Var x Nrate)	21	0.1268	0.240	21	0.2178	0.040	21	0.0715	0.829	21	0.388	0.392
Man x Nrat	е	21	0.1268	0.129	21	0.2178	0.211	21	0.0715	0.342	21	0.388	0.170
Var x Man	x Nrate	21	0.1793	0.195	21	0.3080	0.435	21	0.1012	0.442	21	0.549	0.315

Table 19. High Mowthorpe. Mid flowering green area indices.

Variety	N rate	GAI lea	aves		GAI ste	ems		Total G	SAI	
	kg/ha	Conv	СМ	Mean	Conv	CM	Mean	Conv	СМ	Mean
Excalibur	0	0.287		0.287	0.248		0.248	0.534		0.534
Excalibur	240	1.609	2.063	1.836	1.294	0.677	0.985	2.902	2.739	2.821
Excalibur	Mean	0.948	1.175	1.061	0.771	0.462	0.616	1.718	1.637	1.678
PR45D03	0	0.316		0.316	0.211		0.211	0.527		0.527
PR45D03	240	3.158	3.114	3.136	0.567	0.650	0.608	3.725	3.764	3.744
PR45D03	Mean	1.737	1.715	1.726	0.389	0.430	0.410	2.126	2.145	2.136
Exc+D03	0	0.301		0.301	0.229		0.229	0.531		0.531
Exc+D03	240	2.383	2.588	2.486	0.930	0.663	0.797	3.314	3.251	3.283
Exc+D03	Mean	1.342	1.445	1.394	0.580	0.446	0.513	1.922	1.891	1.907
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		14	0.1384	<0.001	14	0.1390	0.159	14	0.0799	<0.001
N manager	ment	14	0.1384	0.471	14	0.1390	0.353	14	0.0799	0.703
Nrate		14	0.1384	<0.001	14	0.1390	0.001	14	0.0799	<0.001
Var x Man		14	0.1958	0.383	14	0.1965	0.229	14	0.1130	0.540
Var x Nrate)	14	0.1958	<0.001	14	0.1965	0.241	14	0.1130	<0.001
Man x Nrat	:e	14	0.1958	0.471	14	0.1965	0.353	14	0.1130	0.703
Var x Man	Х	44	0.0700	0.202	4.4	0.0770	0.000	44	0.4500	0.540
Nrate		14	0.2769	0.383	14	0.2779	0.229	14	0.1598	0.540

Table 20. High Mowthorpe. Mid flowering dry matter measurements.

Variety	N rate	Leaf bi	omass (t/	ha)	Stem b	oiomass (t/ha)	Flower	biomass	(t/ha)	Total b	iomass (t	/ha)
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
													,
Excalibur	0	0.258		0.258	1.760		1.760	0.518		0.518	2.537		2.537
Excalibur	240	1.193	1.075	1.134	4.246	3.613	3.930	1.272	0.967	1.119	6.711	5.655	6.183
Excalibur	Mean	0.725	0.667	0.696	3.003	2.687	2.845	0.895	0.743	0.819	4.624	4.096	4.360
	_												
PR45D03	0	0.301		0.301	1.317		1.317	0.364		0.364	1.982		1.982
PR45D03	240	1.377	1.377	1.377	2.803	3.185	2.994	0.823	1.022	0.923	5.003	5.583	5.293
PR45D03	Mean	0.839	0.839	0.839	2.060	2.251	2.156	0.594	0.693	0.643	3.493	3.783	3.638
Exc+D03	0	0.280		0.280	1.539		1.539	0.441		0.441	2.259		2.259
Exc+D03	240	1.285	1.226	1.255	3.525	3.399	3.462	1.048	0.994	1.021	5.857	5.619	5.738
Exc+D03	Mean	0.782	0.753	0.767	2.532	2.469	2.500	0.744	0.718	0.731	4.058	3.939	3.999
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		14	0.0451	0.007	14	0.1122	<0.001	14	0.0617	0.013	14	0.1728	<0.001
N manage	ment	14	0.0451	0.525	14	0.1122	0.585	14	0.0617	0.670	14	0.1728	0.502
Nrate		14	0.0451	<0.001	14	0.1122	<0.001	14	0.0617	< 0.001	14	0.1728	< 0.001
Var x Man		14	0.0638	0.525	14	0.1587	0.040	14	0.0872	0.060	14	0.2444	0.033
Var x Nrate	9	14	0.0638	0.044	14	0.1587	0.046	14	0.0872	0.736	14	0.2444	0.349
Man x Nrat	e	14	0.0638	0.525	14	0.1587	0.585	14	0.0872	0.670	14	0.2444	0.502
Var x Man	x Nrate	14	0.0903	0.525	14	0.2244	0.040	14	0.1233	0.060	14	0.3456	0.033

 Table 21. Rosemaund. Mid flowering green area indices.

Variety	N rate	GAI lea	ves		GAI ste	ms		Total G	Al	
	kg/ha	Conv	СМ	Mean	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	1.018		1.018	0.348		0.348	1.365		1.365
Excalibur	240	3.520	3.862	3.691	0.681	0.782	0.731	4.201	4.644	4.422
Excalibur	Mean	2.269	2.440	2.354	0.514	0.565	0.540	2.783	3.005	2.894
PR45D03	0	1.333		1.333	0.372		0.372	1.705		1.705
PR45D03	240	4.826	4.862	4.844	0.634	0.629	0.631	5.459	5.491	5.475
PR45D03	Mean	3.079	3.097	3.088	0.503	0.500	0.501	3.582	3.598	3.590
Exc+D03	0	1.175		1.175	0.360		0.360	1.535		1.535
Exc+D03	240	4.173	4.362	4.267	0.657	0.705	0.681	4.830	5.067	4.949
Exc+D03	Mean	2.674	2.769	2.721	0.509	0.533	0.521	3.183	3.301	3.242
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	0.1795	<0.001	21	0.0394	0.343	21	0.208	0.003
N managen	nent	21	0.1795	0.603	21	0.0394	0.549	21	0.208	0.575
Nrate		21	0.1795	< 0.001	21	0.0394	< 0.001	21	0.208	< 0.001
Var x Man		21	0.2538	0.674	21	0.0557	0.511	21	0.295	0.627
Var x Nrate		21	0.2538	0.030	21	0.0557	0.130	21	0.295	0.102
Man x Nrate	9	21	0.2538	0.603	21	0.0557	0.549	21	0.295	0.575
Var x Man x	Nrate	21	0.3589	0.674	21	0.0787	0.511	21	0.417	0.627

 Table 22. Rosemaund. Mid flowering dry matter measurements.

Variety	N rate	Leaf bi	omass (t/	ha)	Stem b	oiomass (t	t/ha)	Flower	biomass	(t/ha)	Total b	iomass	(t/ha)
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	0.619		0.619	2.426		2.426	0.381		0.381	3.427		3.427
Excalibur	240	1.541	1.683	1.612	3.969	4.158	4.063	0.636	0.654	0.645	6.145	6.495	6.320
Excalibur	Mean	1.080	1.151	1.116	3.197	3.292	3.244	0.509	0.518	0.513	4.786	4.961	4.873
PR45D03	0	0.825		0.825	2.248		2.248	0.555		0.555	3.628		3.628
PR45D03	240	2.043	2.061	2.052	3.212	2.936	3.074	0.719	0.710	0.714	5.975	5.707	5.841
PR45D03	Mean	1.434	1.443	1.439	2.730	2.592	2.661	0.637	0.632	0.635	4.801	4.667	4.734
Exc+D03	0	0.722		0.722	2.337		2.337	0.468		0.468	3.527		3.527
Exc+D03	240	1.792	1.872	1.832	3.591	3.547	3.569	0.678	0.682	0.680	6.060	6.101	6.080
Exc+D03	Mean	1.257	1.297	1.277	2.964	2.942	2.953	0.573	0.575	0.574	4.793	4.814	4.804
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	0.0739	<0.001	21	0.1895	0.006	21	0.0397	0.006	21	0.279	0.624
N manager	ment	21	0.0739	0.591	21	0.1895	0.909	21	0.0397	0.957	21	0.279	0.942
Nrate		21	0.0739	<0.001	21	0.1895	<0.001	21	0.0397	<0.001	21	0.279	< 0.001
Var x Man		21	0.1045	0.679	21	0.2680	0.546	21	0.0561	0.860	21	0.395	0.586
Var x Nrate)	21	0.1045	0.128	21	0.2680	0.044	21	0.0561	0.204	21	0.395	0.236
Man x Nrat	e	21	0.1045	0.591	21	0.2680	0.909	21	0.0561	0.957	21	0.395	0.942
Var x Man	x Nrate	21	0.1478	0.679	21	0.3790	0.546	21	0.0793	0.860	21	0.558	0.586

Table 23. Terrington. Mid flowering measurement of nitrogen concentration in dry plant material on Treatments 1, 3 and 9 without Folicur.

Variety	N rate	Leaf N	%		Other p	lant materia	al N %	Total cr	op N (kg/l	ha)	Crop N GAI	l (kg N/h	a) per unit
	kg/ha	Conv	СМ	Mean	Conv	CM	Mean	Conv	СМ	Mean	Conv	CM	Mean
Excalibur	0	2.17		2.17	1.41		1.41	27.5		27.5	47.3		47.3
Excalibur	240	3.97	4.52	4.24	2.26	2.36	2.31	114.2	116.2	115.2	55.0	60.7	57.8
Excalibur	Mean	3.07	3.34	3.20	1.84	1.89	1.86	70.8	71.8	71.3	51.1	54.0	52.6
PR45D03	0	2.07		2.07	1.43		1.43	28.2		28.2	48.3		48.3
PR45D03	240	4.59	4.23	4.41	2.55	2.48	2.51	141.5	95.4	118.5	65.6	51.4	58.5
PR45D03	Mean	3.33	3.15	3.24	1.99	1.95	1.97	84.8	61.8	73.3	56.9	49.8	53.4
Exc+D03	0	2.12		2.12	1.42		1.42	27.8		27.8	47.8		47.8
Exc+D03	240	4.28	4.37	4.33	2.41	2.42	2.41	127.8	105.8	116.8	60.3	56.0	58.2
Exc+D03	Mean	3.20	3.24	3.22	1.91	1.92	1.92	77.8	66.8	72.3	54.0	51.9	53.0
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	0.1152	0.770	21	0.0844	0.212	21	9.31	0.833	21	2.59	0.755
N managen	nent	21	0.1152	0.690	21	0.0844	0.944	21	9.31	0.250	21	2.59	0.422
Nrate		21	0.1152	< 0.001	21	0.0844	< 0.001	21	9.31	< 0.001	21	2.59	< 0.001
Var x Man		21	0.1629	0.061	21	0.1193	0.620	21	13.17	0.211	21	3.66	0.067
Var x Nrate		21	0.1629	0.254	21	0.1193	0.294	21	13.17	0.890	21	3.66	0.942
Man x Nrate	9	21	0.1629	0.690	21	0.1193	0.944	21	13.17	0.250	21	3.66	0.422
Var x Man	Nrate	21	0.2304	0.061	21	0.1687	0.620	21	18.62	0.211	21	5.17	0.067

Table 24. High Mowthorpe. Mid flowering measurement of nitrogen concentration in dry plant material on Treatments 1, 3 and 9 without Folicur.

Variety	N rate	Leaf N	%		Other p	lant materia	al N %	Total cr	op N (kg/l	na)	Crop N unit GA	l (kg N/h	na) per
	kg/ha	Conv	CM	Mean	Conv	СМ	Mean	Conv	СМ	Mean	Conv	CM	Mean
Excalibur	0	2.55		2.55	1.35		1.35	37.5		37.5	71.8		71.8
Excalibur	240	3.21	4.09	3.65	2.78	2.57	2.67	190.6	160.3	175.5	65.8	59.8	62.8
Excalibur		2.88	3.32	3.10		1.96	2.01	114.0		106.5	68.8		67.3
Excalibul	Mean	2.00	3.32	3.10	2.06	1.90	2.01	114.0	98.9	106.5	00.0	65.8	67.3
PR45D03	0	2.78		2.78	1.40		1.40	32.2		32.2	64.3		64.3
PR45D03	240	4.98	4.31	4.65	2.85	3.20	3.03	171.9	195.9	183.9	46.6	52.0	49.3
PR45D03	Mean	3.88	3.54	3.71	2.12	2.30	2.21	102.1	114.1	108.1	55.5	58.2	56.8
Exc+D03	0	2.66		2.66	1.37		1.37	34.8		34.8	68.1		68.1
Exc+D03	240	4.10	4.20	4.15	2.81	2.89	2.85	181.3	178.1	179.7	56.2	55.9	56.1
Exc+D03	Mean	3.38	3.43	3.41	2.09	2.13	2.11	108.1	106.5	107.3	62.1	62.0	62.1
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		14	0.1271	< 0.001	14	0.1959	0.319	14	9.25	0.865	14	4.21	0.026
N managem	nent	14	0.1271	0.692	14	0.1959	0.858	14	9.25	0.866	14	4.21	0.974
Nrate		14	0.1271	< 0.001	14	0.1959	< 0.001	14	9.25	< 0.001	14	4.21	0.013
Var x Man		14	0.1797	0.009	14	0.2770	0.481	14	13.08	0.165	14	5.96	0.508
Var x Nrate		14	0.1797	0.009	14	0.2770	0.452	14	13.08	0.472	14	5.96	0.493
Man x Nrate	9	14	0.1797	0.692	14	0.2770	0.858	14	13.08	0.866	14	5.96	0.974
Var x Man x	Nrate	14	0.2542	0.009	14	0.3918	0.481	14	18.49	0.165	14	8.42	0.508

Table 25. Rosemaund. Mid flowering measurement of nitrogen concentration in dry plant material on Treatments 1, 3 and 9 without Folicur.

Variety	N rate	Leaf N	%		Other pl	ant mater	ial N %	Total cro	op N (kg/h	na)	Crop Nunit G	l (kg N/h	a) per
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	СМ	Mean
	•	0.00		0.00	4.40		4.40	04.0		04.0	440		44.0
Excalibur	0	3.02		3.02	1.42		1.42	61.2		61.2	44.9		44.9
Excalibur	240	4.98	5.34	5.16	2.97	3.09	3.03	220.0	240.0	230.0	51.6	51.7	51.6
Excalibur	Mean	4.00	4.18	4.09	2.20	2.26	2.23	140.6	150.6	145.6	48.2	48.3	48.3
PR45D03	0	2.96		2.96	1.77		1.77	75.6		75.6	43.8		43.8
PR45D03	240	5.54	5.43	5.49	3.64	3.46	3.55	255.8	239.3	247.6	46.8	43.8	45.3
PR45D03	Mean	4.25	4.20	4.22	2.70	2.61	2.66	165.7	157.5	161.6	45.3	43.8	44.5
Exc+D03	0	2.99		2.99	1.59		1.59	68.4		68.4	44.3		44.3
Exc+D03	240	5.26	5.39	5.32	3.30	3.27	3.29	237.9	239.7	238.8	49.2	47.7	48.5
Exc+D03	Mean	4.13	4.19	4.16	2.45	2.43	2.44	153.2	154.1	153.6	46.8	46.0	46.4
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	0.0924	0.172	21	0.1199	0.002	21	12.03	0.197	21	1.622	0.032
N manage	ment	21	0.0924	0.498	21	0.1199	0.902	21	12.03	0.941	21	1.622	0.659
Nrate		21	0.0924	< 0.001	21	0.1199	< 0.001	21	12.03	< 0.001	21	1.622	0.019
Var x Man		21	0.1307	0.223	21	0.1696	0.532	21	17.01	0.456	21	2.294	0.638
Var x Nrate	Э	21	0.1307	0.049	21	0.1696	0.483	21	17.01	0.898	21	2.294	0.124
Man x Nrat	te	21	0.1307	0.498	21	0.1696	0.902	21	17.01	0.941	21	2.294	0.659
Var x Man Nrate	х	21	0.1848	0.223	21	0.2399	0.532	21	24.06	0.456	21	3.245	0.638

Light interception at mid-flowering

At Terrington, there were no factors that significantly affected the amount of light reflected by the flowers (Table 26). There was, however, significantly greater interception of light by the flower layer in high N treatments and by PR45D03 relative to Excalibur (Table 27). Light interception at ground level was significantly increased by higher N rate and reduced by Folicur treatment (Table 28). There were no significant effects of Canopy Management.

At High Mowthorpe, light reflection by the flowers was significantly increased for PR45D03 relative to Excalibur (Table 29). Folicur also increased light reflection which is unusual. These differences were not replicated in measurements of light interception by the canopy, in which N rate was the only significant factor (Table 30). As at Terrington, higher N rate increased light interception at ground level (Table 31). There were no significant effects of Canopy Management.

At Rosemaund, as at High Mowthorpe, light reflection by the flowers was greater in PR45D03 than in Excalibur (Table 32). Folicur was also a significant factor, but had the opposite effect compared to High Mowthorpe. At Rosemaund Folicur reduced light reflection and increased the amount of light penetrating through the flower layer. Rosemaund was the only site at which Canopy Management had significant effects on light interception. Canopy Management reduced light reflection at 240 kg N/ha relative to Conventional management, but had little effect at 120 kg N/ha. This was supported by the observation that Canopy Management also reduced light interception by the flower layer at high N, allowing more light through to the leaves (Table 33), but did not affect light penetration to ground level (Table 34). There were small but significant effects of variety and N rate on light interception at ground level, with interception higher in PR45D03 and at higher N.

 Table 26. Terrington. Percentage of light reflected from flowers.

Variety	N rate	No Fol	icur		Folicur	(0.5 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	7.72	7.14	7.43	7.80	6.65	7.23	7.76	6.90	7.33
Excalibur	240	7.98	7.19	7.58	7.49	7.53	7.51	7.74	7.36	7.55
Excalibur	Mean	7.85	7.16	7.51	7.65	7.09	7.37	7.75	7.13	7.44
PR45D03	120	8.11	7.99	8.05	8.19	8.01	8.10	8.15	8.00	8.07
PR45D03	240	7.30	7.63	7.46	7.63	9.05	8.34	7.46	8.34	7.90
PR45D03	Mean	7.70	7.81	7.75	7.91	8.53	8.22	7.81	8.17	7.99
_										
Exc+D03	120	7.91	7.56	7.74	8.00	7.33	7.66	7.96	7.45	7.70
Exc+D03	240	7.64	7.41	7.52	7.56	8.29	7.93	7.60	7.85	7.72
Exc+D03	Mean	7.78	7.49	7.63	7.78	7.81	7.79	7.78	7.65	7.71
Tuestassast	-		-1£	OED.	Г					
Treatment			df	SED	F pr.					
Folicur			45	0.303	0.593					
Variety			45	0.303	0.077					
N managen	nent		45	0.303	0.670					
Nrate			45	0.303	0.939					
Fol x Var			45	0.428	0.325					
Fol x Man			45	0.428	0.599					
Var x Man			45	0.428	0.110					
Fol x Nrate			45	0.428	0.434					
Var x Nrate			45	0.428	0.526					
Man x Nrate	Э		45	0.428	0.217					
Fol x Var x	Fol x Var x Man			0.605	0.752					
Fol x Var x	Fol x Var x Nrate			0.605	0.571					
Fol x Man x	Fol x Man x Nrate			0.605	0.300					
Var x Man	√ar x Man x Nrate			0.605	0.658					
Fol x Var x	Man x Nr	ate	45	0.856	0.917					

Table 27. Terrington. Percentage of light interception by crop at base of flower layer.

Variety	N rate	No Foli	icur		Folicur (0).5 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	25.4	39.6	32.5	34.3	37.1	35.7	29.8	38.4	34.1
Excalibur	240	38.5	39.0	38.7	34.0	41.7	37.9	36.3	40.4	38.3
Excalibur	Mean	31.9	39.3	35.6	34.2	39.4	36.8	33.0	39.4	36.2
PR45D03	120	41.2	42.7	42.0	39.0	41.2	40.1	40.1	41.9	41.0
PR45D03	240	49.1	46.4	47.7	45.1	44.1	44.6	47.1	45.3	46.2
PR45D03	Mean	45.2	44.5	44.8	42.0	42.7	42.3	43.6	43.6	43.6
Exc+D03	120	33.3	41.1	37.2	36.6	39.2	37.9	35.0	40.2	37.6
Exc+D03	240	43.8	42.7	43.2	39.6	42.9	41.2	41.7	42.8	42.2
Exc+D03	Mean	38.5	41.9	40.2	38.1	41.0	39.6	38.3	41.5	39.9
Treatment	Treatment			SED	F pr.					
Folicur			45	1.840	0.721					
Variety			45	1.840	<0.001					
N managen	nent		45	1.840	0.093					
Nrate			45	1.840	0.015					
Fol x Var			45	2.603	0.323					
Fol x Man			45	2.603	0.908					
Var x Man			45	2.603	0.094					
Fol x Nrate			45	2.603	0.471					
Var x Nrate			45	2.603	0.802					
Man x Nrate	Э		45	2.603	0.278					
Fol x Var x	Fol x Var x Man			3.681	0.641					
Fol x Var x	Fol x Var x Nrate			3.681	0.703					
Fol x Man x	ol x Man x Nrate			3.681	0.193					
Var x Man x	/ar x Man x Nrate			3.681	0.914					
Fol x Var x	Man x Nra	te	45	5.206	0.239					

Table 28. Terrington. Percentage of light intercepted by crop at ground level.

Variety	N rate	No Foli	icur		Folicur (0).5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	83.4	86.9	85.2	86.8	83.3	85.1	85.1	85.1	85.1
Excalibur	240	90.7	91.2	90.9	88.2	90.6	89.4	89.4	90.9	90.2
Excalibur	Mean	87.1	89.0	88.0	87.5	87.0	87.2	87.3	88.0	87.6
PR45D03	120	93.2	89.1	91.1	85.7	81.0	83.4	89.5	85.0	87.2
PR45D03	240	94.5	92.1	93.3	90.6	93.1	91.8	92.5	92.6	92.6
PR45D03	Mean	93.8	90.6	92.2	88.2	87.0	87.6	91.0	88.8	89.9
F D02	400	00.0	00.0	00.0	00.0	00.0	04.0	07.0	05.4	00.0
Exc+D03	120	88.3	88.0	88.2	86.3	82.2	84.2	87.3	85.1	86.2
Exc+D03	240	92.6	91.6	92.1	89.4	91.9	90.6	91.0	91.8	91.4
Exc+D03	Mean	90.4	89.8	90.1	87.8	87.0	87.4	89.1	88.4	88.8
Treatment	Treatment			SED	F pr.					
rrodinon			df	025	. μ					
Folicur			45	1.209	0.030					
Variety			45	1.209	0.067					
N managem	nent		45	1.209	0.557					
Nrate			45	1.209	<0.001					
Fol x Var			45	1.710	0.123					
Fol x Man			45	1.710	0.931					
Var x Man			45	1.710	0.236					
Fol x Nrate			45	1.710	0.317					
Var x Nrate			45	1.710	0.910					
Man x Nrate)		45	1.710	0.227					
Fol x Var x I	Fol x Var x Man			2.418	0.346					
Fol x Var x I	Fol x Var x Nrate			2.418	0.119					
Fol x Man x	Fol x Man x Nrate			2.418	0.144					
Var x Man x	√ar x Man x Nrate			2.418	0.534					
Fol x Var x I	Man x Nra	te	45	3.420	0.729					

 Table 29. High Mowthorpe. Percentage of light reflected from flowers.

Variety	N rate	No Foli	cur		Folicur (0).5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	7.88	8.54	8.21	8.71	9.84	9.28	8.30	9.19	8.74
Excalibur	240	8.30	8.70	8.50	8.58	8.92	8.75	8.44	8.81	8.63
Excalibur	Mean	8.09	8.62	8.36	8.65	9.38	9.01	8.37	9.00	8.68
PR45D03	120	13.30	14.35	13.83	15.71	15.39	15.55	14.51	14.87	14.69
PR45D03	240	13.75	13.58	13.66	14.70	15.44	15.07	14.23	14.51	14.37
PR45D03	Mean	13.53	13.96	13.74	15.21	15.42	15.31	14.37	14.69	14.53
Exc+D03	120	10.59	11.44	11.02	12.21	12.62	12.41	11.40	12.03	11.72
Exc+D03	240	11.03	11.14	11.08	11.64	12.18	11.91	11.33	11.66	11.50
Exc+D03	Mean	10.81	11.29	11.05	11.93	12.40	12.16	11.37	11.84	11.61
Tractmont			df	CED	Г.,,					
Treatment			ui	SED	F pr.					
Folicur			30	0.422	0.013					
Variety			30	0.422	<0.001					
N managen	nent		30	0.422	0.267					
Nrate			30	0.422	0.608					
Fol x Var			30	0.597	0.289					
Fol x Man			30	0.597	0.990					
Var x Man			30	0.597	0.716					
Fol x Nrate			30	0.597	0.506					
Var x Nrate			30	0.597	0.812					
Man x Nrate	е		30	0.597	0.722					
Fol x Var x	Fol x Var x Man			0.845	0.801					
Fol x Var x	Fol x Var x Nrate			0.845	0.766					
Fol x Man x	Fol x Man x Nrate			0.845	0.608					
Var x Man >	Var x Man x Nrate		30	0.845	0.796					
Fol x Var x	Fol x Var x Man x Nrate			1.194	0.414					

Table 30. High Mowthorpe. Percentage of light intercepted by crop at base of flower layer.

Variety	N rate	No Fol	icur		Folicur	(0.5 l/ha))	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	39.3	50.2	44.8	50.4	43.6	47.0	44.8	46.9	45.9
Excalibur	240	47.8	47.9	47.8	49.2	50.5	49.9	48.5	49.2	48.9
Excalibur	Mean	43.5	49.0	46.3	49.8	47.1	48.4	46.7	48.1	47.4
PR45D03	120	46.9	45.8	46.4	41.6	38.7	40.2	44.2	42.3	43.3
PR45D03	240	52.3	54.7	53.5	49.9	50.7	50.3	51.1	52.7	51.9
PR45D03	Mean	49.6	50.3	49.9	45.7	44.7	45.2	47.7	47.5	47.6
Exc+D03	120	43.1	48.0	45.6	46.0	41.2	43.6	44.5	44.6	44.6
Exc+D03	240	50.0	51.3	50.7	49.6	50.6	50.1	49.8	51.0	50.4
Exc+D03	Mean	46.6	49.7	48.1	47.8	45.9	46.8	47.2	47.8	47.5
Treatment			df	SED	F pr.					
Folicur			30	2.12	0.555					
Variety			30	2.12	0.921					
N manager	nent		30	2.12	0.772					
Nrate			30	2.12	0.010					
Fol x Var			30	3.00	0.118					
Fol x Man			30	3.00	0.252					
Var x Man			30	3.00	0.717					
Fol x Nrate			30	3.00	0.743					
Var x Nrate			30	3.00	0.192					
Man x Nrat	е		30	3.00	0.791					
Fol x Var x	Man		30	4.25	0.447					
Fol x Var x	Nrate		30	4.25	0.709					
Fol x Man x Nrate		30	4.25	0.272						
Var x Man x Nrate			30	4.25	0.564					
Fol x Var x	var x Man x Nrate Fol x Var x Man x Nrate			6.01	0.282					

 Table 31. High Mowthorpe. Percentage of light intercepted by crop at ground level.

Variety	N rate	No Fol	icur		Folicur (0.5 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	СМ	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	91.8	92.2	92.0	92.1	90.4	91.3	92.0	91.3	91.6
Excalibur	240	95.7	96.3	96.0	96.6	97.2	96.9	96.2	96.8	96.5
Excalibur	Mean	93.8	94.3	94.0	94.4	93.8	94.1	94.1	94.0	94.0
PR45D03	120	89.1	89.6	89.4	92.5	91.4	91.9	90.8	90.5	90.7
PR45D03	240	97.2	95.8	96.5	96.5	97.5	97.0	96.8	96.6	96.7
PR45D03	Mean	93.2	92.7	92.9	94.5	94.4	94.5	93.8	93.6	93.7
Exc+D03	120	90.5	90.9	90.7	92.3	90.9	91.6	91.4	90.9	91.2
Exc+D03	240	96.5	96.1	96.3	96.5	97.3	96.9	96.5	96.7	96.6
Exc+D03	Mean	93.5	93.5	93.5	94.4	94.1	94.3	93.9	93.8	93.9
Treatment			df	SED	F pr.					
Folicur			30	0.723	0.282					
Variety			30	0.723	0.630					
N manager	nent		30	0.723	0.845					
Nrate			30	0.723	<0.001					
Fol x Var			30	1.023	0.323					
Fol x Man			30	1.023	0.836					
Var x Man			30	1.023	0.878					
Fol x Nrate			30	1.023	0.876					
Var x Nrate	•		30	1.023	0.390					
Man x Nrat	е		30	1.023	0.638					
Fol x Var x	Man		30	1.447	0.615					
Fol x Var x	Nrate		30	1.447	0.201					
Fol x Man x	Nrate		30	1.447	0.305					
Var x Man	x Nrate		30	1.447	0.702					
Fol x Var x	Man x Nı	ate	30	2.046	0.734					

 Table 32. Rosemaund. Percentage of light reflected by flowers.

Variety			icur		Folicur (0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	12.6	12.9	12.8	12.2	12.3	12.2	12.4	12.6	12.5
Excalibur	240	12.9	12.8	12.8	13.2	12.4	12.8	13.1	12.6	12.8
Excalibur	Mean	12.8	12.8	12.8	12.7	12.3	12.5	12.7	12.6	12.6
PR45D03	120	16.9	17.2	17.1	16.1	16.6	16.3	16.5	16.9	16.7
PR45D03	240	16.6	15.9	16.3	15.7	14.5	15.1	16.2	15.2	15.7
PR45D03	Mean	16.8	16.6	16.7	15.9	15.5	15.7	16.3	16.0	16.2
Exc+D03	120	14.8	15.0	14.9	14.1	14.4	14.3	14.5	14.7	14.6
Exc+D03	240	14.7	14.4	14.5	14.5	13.4	13.9	14.6	13.9	14.2
Exc+D03	Mean	14.8	14.7	14.7	14.3	13.9	14.1	14.5	14.3	14.4
Treatment			df	SED	F pr.					
Folicur			45	0.213	0.005					
Variety			45	0.213	<0.001					
N manager	nent		45	0.213	0.289					
Nrate			45	0.213	0.114					
Fol x Var			45	0.301	0.121					
Fol x Man			45	0.301	0.437					
Var x Man			45	0.301	0.774					
Fol x Nrate			45	0.301	0.893					
Var x Nrate	:		45	0.301	0.003					
Man x Nrat	е		45	0.301	0.025					
Fol x Var x	Man		45	0.426	0.784					
Fol x Var x	Nrate		45	0.426	0.297					
Fol x Man x Nrate			45	0.426	0.372					
Var x Man x Nrate			45	0.426	0.411					
Fol x Var x	Fol x Var x Man x Nrate			0.602	0.914					

Table 33. Rosemaund. Percentage of light intercepted by crop at base of flower layer.

Variety	N rate	No Fol	icur		Folicur	(0.5 l/ha))	Conv	CM	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
E lib	400	70.4	70.0	70.0	05.7	00.0	67.0	07.0	CO F	60.7
Excalibur	120	70.1	70.3	70.2	65.7	68.6	67.2	67.9	69.5	68.7
Excalibur	240	73.5	68.9	71.2	76.1	68.2	72.2	74.8	68.6	71.7
Excalibur	Mean	71.8	69.6	70.7	70.9	68.4	69.7	71.3	69.0	70.2
PR45D03	120	71.0	74.3	72.7	67.4	71.5	69.5	69.2	72.9	71.1
PR45D03	240	73.6	72.9	73.2	69.0	64.7	66.9	71.3	68.8	70.0
PR45D03	Mean	72.3	73.6	73.0	68.2	68.1	68.2	70.3	70.9	70.6
Exc+D03	120	70.6	72.3	71.4	66.6	70.1	68.3	68.6	71.2	69.9
Exc+D03	240	73.5	70.9	72.2	72.6	66.5	69.5	73.0	68.7	70.9
Exc+D03	Mean	72.0	71.6	71.8	69.6	68.3	68.9	70.8	69.9	70.4
		l			ļ					ļ
Treatment			df	SED	F pr.					
Folicur			45	1.270	0.026					
Variety			45	1.270	0.765					
N manager	nent		45	1.270	0.496					
Nrate			45	1.270	0.443					
Fol x Var			45	1.795	0.147					
Fol x Man			45	1.795	0.732					
Var x Man			45	1.795	0.254					
Fol x Nrate			45	1.795	0.873					
Var x Nrate			45	1.795	0.120					
Man x Nrat	е		45	1.795	0.009					
Fol x Var x	Man		45	2.539	0.817					
Fol x Var x	Nrate		45	2.539	0.165					
Fol x Man >	Nrate		45	2.539	0.304					
Var x Man	x Nrate		45	2.539	0.753					
Fol x Var x	ol x Var x Man x Nrate		45	3.591	0.871					

 Table 34. Rosemaund. Percentage of light intercepted by crop at ground level.

Variety	N rate	No Fol	icur		Folicur (0.5 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	97.3	97.1	97.2	96.4	96.0	97.3	96.9	96.5	96.7
Excalibur	240	98.6	97.8	98.2	98.9	98.6	98.6	98.8	98.2	98.5
Excalibur	Mean	98.0	97.4	97.7	97.7	97.3	98.0	97.8	97.4	97.6
PR45D03	120	98.0	98.5	98.2	98.0	98.1	98.0	98.0	98.3	98.2
PR45D03	240	99.6	99.4	99.5	99.3	98.9	99.6	99.4	99.1	99.3
PR45D03	Mean	98.8	98.9	98.9	98.6	98.5	98.8	98.7	98.7	98.7
Exc+D03	120	97.6	97.8	97.7	97.2	97.1	97.1	97.4	97.4	97.4
Exc+D03	240	99.1	98.6	98.8	99.1	98.7	98.9	99.1	98.7	98.9
Exc+D03	Mean	98.4	98.2	98.3	98.2	97.9	98.0	98.3	98.0	98.2
Treatment			df	SED	F pr.					
Folicur			45	0.211	0.235					
Variety			45	0.211	<0.001					
N manager	nent		45	0.211	0.312					
Nrate			45	0.211	<0.001					
Fol x Var			45	0.298	0.882					
Fol x Man			45	0.298	0.850					
Var x Man			45	0.298	0.230					
Fol x Nrate			45	0.298	0.114					
Var x Nrate	;		45	0.298	0.125					
Man x Nrat	е		45	0.298	0.302					
Fol x Var x	Man		45	0.422	0.663					
Fol x Var x	Nrate		45	0.422	0.044					
Fol x Man	Nrate		45	0.422	0.596					
Var x Man	x Nrate		45	0.422	0.676					
Fol x Var x	Man x Nr	ate	45	0.596	0.770					

Crop height

At all sites, there was a large and significant difference in height between Excalibur and the semidwarf PR45D03. Higher N significantly increased crop height at High Mowthorpe (Table 36). Canopy Management significantly reduced height at Terrington and Rosemaund, relative to Conventional management (Tables 35 and 37).

At Terrington, Excalibur was 32 cm taller than PR45D03 and Canopy Management reduced crop height by 2 cm (Table 35). Height was not significantly affected by N rate or Folicur treatment

At High Mowthorpe, Excalibur was 10 cm taller than PR45D03 (Table 36). Excalibur also responded to higher N rate, with an increase of 7 cm from 120 kg N/ha to 240 kg N/ha in Excalibur but not at all in PR45D03.

At Rosemaund, Excalibur was 41 cm taller than PR45D03 and Canopy Management reduced crop height by 4 cm (Table 37). Folicur treatment reduced height by 7 cm at 120 kg N/ha, but did not affect height at 240 kg N/ha.

Table 35. Terrington. Height (cm) to the top of terminal raceme.

Variety	N rate	No Foli	cur		Folicur (1	.0 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	113.6	114.3	113.9	114.0	112.8	113.4	113.8	113.5	113.7
Excalibur	240	111.9	110.9	111.4	116.0	110.9	113.5	114.0	110.9	112.4
Excalibur	Mean	112.8	112.6	112.7	115.0	111.8	113.4	113.9	112.2	113.1
PR45D03	120	84.6	80.0	82.3	84.7	81.0	82.8	84.6	80.5	82.6
PR45D03	240	80.1	79.6	79.9	81.0	81.0	81.0	80.6	80.3	80.5
PR45D03	Mean	82.3	79.8	81.1	82.9	81.0	81.9	82.6	80.4	81.5
Exc+D03	120	99.1	97.1	98.1	99.4	96.9	98.1	99.2	97.0	98.1
Exc+D03	240	96.0	95.3	95.6	98.5	95.9	97.2	97.3	95.6	96.4
Exc+D03	Mean	97.6	96.2	96.9	98.9	96.4	97.7	98.3	96.3	97.3
- , ,			16	055	_					
Treatment			df	SED	F pr.					
Folicur			45	0.930	0.393					
Variety			45	0.930	<0.001					
N managem	nent		45	0.930	0.043					
Nrate			45	0.930	0.078					
Fol x Var			45	1.316	0.956					
Fol x Man			45	1.316	0.530					
Var x Man			45	1.316	0.789					
Fol x Nrate			45	1.316	0.396					
Var x Nrate			45	1.316	0.640					
Man x Nrate	Э		45	1.316	0.777					
Fol x Var x	Man		45	1.860	0.327					
Fol x Var x	Nrate		45	1.860	0.597					
Fol x Man x	Nrate		45	1.860	0.722					
Var x Man x	Nrate		45	1.860	0.077					
Fol x Var x	Man x Nra	ate	45	2.631	0.815					

Table 36. High Mowthorpe. Height (cm) to the top of terminal raceme.

Variety	N rate	No Foli	cur		Folicur (I.0 I/ha)		Conv	CM	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Excalibur	120	109.3	108.3	108.8	111.3	109.2	110.3	110.3	108.7	109.5
Excalibur	240	118.3	114.4	116.4	115.2	116.8	116.0	116.8	115.6	116.2
Excalibur	Mean	113.8	111.3	112.6	113.3	113.0	113.1	113.5	112.1	112.8
PR45D03	120	102.5	104.1	103.3	101.0	101.4	101.2	101.8	102.8	102.3
PR45D03	240	104.5	102.4	103.5	101.3	103.0	102.2	102.9	102.7	102.8
PR45D03	Mean	103.5	103.3	103.4	101.2	102.2	101.7	102.3	102.7	102.5
Exc+D03	120	105.9	106.2	106.0	106.2	105.3	105.7	106.0	105.7	105.9
Exc+D03	240	111.4	108.4	109.9	108.3	109.9	109.1	109.8	109.1	109.5
Exc+D03	Mean	108.6	107.3	108.0	107.2	107.6	107.4	107.9	107.4	107.7
Treatment			df	SED	F pr.					
Folicur			32	1.055	0.591					
Variety			32	1.055	<0.001					
N manager	nent		32	1.055	0.646					
Nrate			32	1.055	0.002					
Fol x Var			32	1.492	0.299					
Fol x Man			32	1.492	0.418					
Var x Man			32	1.492	0.407					
Fol x Nrate			32	1.492	0.791					
Var x Nrate	:		32	1.492	0.007					
Man x Nrat	е		32	1.492	0.852					
Fol x Var x	Man		32	2.110	0.837					
Fol x Var x	Nrate		32	2.110	0.526					
Fol x Man	Nrate		32	2.110	0.179					
Var x Man	x Nrate		32	2.110	0.703					
Fol x Var x	Man x Nra	ate	32	2.983	0.837					

Table 37. Rosemaund. Height (cm) to the top of terminal raceme.

Variety	N rate	No Foli	cur		Folicur (1	.0 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	146.2	141.5	143.8	140.4	138.5	139.4	143.3	140.0	141.6
Excalibur	240	144.5	138.7	141.6	146.5	139.8	143.1	145.5	139.2	142.4
Excalibur	Mean	145.4	140.1	142.7	143.4	139.1	141.3	144.4	139.6	142.0
PR45D03	120	105.3	107.7	106.5	97.7	97.2	97.4	101.5	102.4	102.0
PR45D03	240	102.8	97.2	100.0	102.9	95.0	98.9	102.8	96.1	99.5
PR45D03	Mean	104.0	102.5	103.2	100.3	96.1	98.2	102.1	99.3	100.7
Exc+D03	120	125.7	124.6	125.1	119.0	117.8	118.4	122.4	121.2	121.8
Exc+D03	240	123.7	118.0	120.8	124.7	117.6	121.0	124.2	117.7	120.9
Exc+D03	Mean	123.0	121.3	123.0	121.9	117.4	119.7	123.3	119.4	120.9
EXC+DOS	Mean	124.7	121.3	123.0	121.9	117.0	119.7	123.3	119.4	121.4
Treatment			df	SED	F pr.					
					·					
Folicur			45	1.725	0.067					
Variety			45	1.725	<0.001					
N managem	nent		45	1.725	0.031					
Nrate			45	1.725	0.617					
Fol x Var			45	2.440	0.303					
Fol x Man			45	2.440	0.803					
Var x Man			45	2.440	0.579					
Fol x Nrate			45	2.440	0.050					
Var x Nrate			45	2.440	0.350					
Man x Nrate	Э		45	2.440	0.130					
Fol x Var x	Man		45	3.451	0.604					
Fol x Var x	Nrate		45	3.451	0.762					
Fol x Man x	Nrate		45	3.451	0.827					
Var x Man x	Nrate		45	3.451	0.501					
Fol x Var x	Man x Nra	ate	45	4.880	0.753					

Lodging

At Terrington, there were high levels of leaning at 10-45°, caused by bending of the stems (Table 38), but no severe lodging (stems displaced at at an angle of >45°). Lodging was significantly affected by increasing N rate, up to a rate of 120 kg N/ha, at which 100% of plot area was lodged in both varieties and both Folicur treatments.

There was no lodging at High Mowthorpe and Rosemaund.

Table 38. Terrington. Percent of plot lodged at 10-45 degrees at harvest.

Variety	N rate	No Fol	icur		Folicur (0.5 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Excalibur	0	25.0		25.0	0.0		0.0	12.5		12.5
Excalibur	60	100.0	100.0	100.0	75.0	75.0	75.0	87.5	87.5	87.5
Excalibur	120	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Excalibur	180	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Excalibur	240	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Excalibur	300	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Excalibur	360	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Excalibur	Mean	89.3	89.3	89.3	82.1	82.1	82.1	85.7	85.7	85.7
PR45D03	0	0.0		0.0	75.0		75.0	37.5		37.5
PR45D03	60	100.0	75.0	87.5	100.0	75.0	87.5	100.0	75.0	87.5
PR45D03	120	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
PR45D03	180	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
PR45D03	240	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
PR45D03	300	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
PR45D03	360	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
PR45D03	Mean	85.7	82.1	83.9	96.4	92.9	94.6	91.1	87.5	89.3
Exc+D03	0	12.5		12.5	37.5		37.5	25.0		25.0
Exc+D03	60	100.0	87.5	93.8	87.5	75.0	81.3	93.8	81.3	87.5
Exc+D03	120	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Exc+D03	180	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Exc+D03	240	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Exc+D03	300	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Exc+D03	360	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Exc+D03	Mean	87.5	85.7	86.6	89.3	87.5	88.4	88.4	86.6	87.5
Treatment			df	SED	F pr.					
Folicur			165	2.49	0.475					
Variety			165	2.49	0.154					
N manager	ment		165	2.49	0.475					
N rate			165	4.67	< 0.001					
Fol x Var			165	3.53	< 0.001					
Fol x Man			165	3.53	1.000					
Var x Man			165	3.53	0.475					
Fol x Nrate	!		165	6.60	0.010					
Var x Nrate)		165	6.60	0.062					
Man x Nrat			165	6.60	0.798					
Fol x Var x			165	4.99	1.000					
Fol x Var x			165	9.33	<0.001					
Fol x Man			165	9.33	1.000					
Var x Man			165	9.33	0.798					
Fol x Var x	Man x N	Vrate	165	13.20	1.000					

Biomass at harvest

At Terrington, increasing N rate from 0 to 240 kg N/ha significantly increased the biomass of seed and pod walls, and the total biomass. There were no significant effects of variety or Canopy Management (Table 39).

At High Mowthorpe, increasing N rate from 0 to 240 kg N/ha significantly increased the biomass of seed, stems and pod walls, and the total biomass. Excalibur had a significantly higher seed biomass than PR45D03. There were no significant effects of variety on the other biomass components or of Canopy Management (Table 40).

At Rosemaund, increased N rate significantly increased the biomass of seed, stems and pod walls, and the total biomass. PR45D03 had significantly higher seed biomass than Excalibur. Stem biomass was higher for Excalibur than PR45D03, and Excalibur showed a greater increase in stem biomass with increased N rate, although these results were not significant (P=0.066, P=0.083 respectively). There were no significant effects of Canopy Management (Table 41).

It is interesting to observe that there were no significant differences between the varieties for total biomass and stem biomass. Across the sites, the average total biomass was 9.73 t/ha for Excalibur and 9.86 t/ha for PR45D03. The average stem biomass was 3.45 t/ha for Excalibur and 3.38 t/ha for PR45D03. The similarity in stem biomass between varieties was unexpected given the height differences and may have resulted from PR55D03 having more branches.

Table 39. Terrington. Pre-harvest measurement of dry matter (t/ha) for plots without Folicur.

Variety	N rate	Total pl	ant dry ma	itter (t/ha)	Seed d	ry matter (t/	ha)	Stem d	ry matter (:/ha)	Pod wa	II dry matte	er (t/ha)
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	СМ	Mean
Excalibur	0	3.61		3.61	1.16		1.16	1.44		1.44	1.01		1.01
Excalibur	240	9.45	8.97	9.21	3.76	3.74	3.75	3.20	2.61	2.91	2.49	2.62	2.55
Excalibur	Mean	6.53	6.29	6.41	2.46	2.45	2.46	2.32	2.02	2.17	1.75	1.81	1.78
PR45D03	0	4.80		4.80	1.21		1.21	2.79		2.79	0.79		0.79
PR45D03	240	9.63	10.50	10.06	3.96	3.98	3.97	2.86	2.92	2.89	2.81	3.60	3.20
PR45D03	Mean	7.21	7.65	7.43	2.59	2.60	2.59	2.83	2.86	2.84	1.80	2.19	2.00
Exc+D03	0	4.20		4.20	1.19		1.19	2.11		2.11	0.90		0.90
Exc+D03	240	9.54	9.73	9.64	3.86	3.86	3.86	3.03	2.77	2.90	2.65	3.11	2.88
Exc+D03	Mean	6.87	6.97	6.92	2.52	2.52	2.52	2.57	2.44	2.51	1.78	2.00	1.89
Treatment		df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.
Variety		21	0.831	0.234	21	0.0817	0.120	21	0.650	0.314	21	0.315	0.502
N managem	ent	21	0.831	0.908	21	0.0817	0.997	21	0.650	0.840	21	0.315	0.475
Nrate		21	0.831	<0.001	21	0.0817	<0.001	21	0.650	0.240	21	0.315	<0.001
Var x Man		21	1.175	0.688	21	0.1155	0.900	21	0.920	0.804	21	0.446	0.607
Var x Nrate		21	1.175	0.842	21	0.1155	0.333	21	0.920	0.305	21	0.446	0.182
Man x Nrate		21	1.175	0.908	21	0.1155	0.997	21	0.920	0.840	21	0.446	0.475
Var x Man x	Nrate	21	1.662	0.688	21	0.1633	0.900	21	1.301	0.804	21	0.630	0.607

Table 40. High Mowthorpe. Pre-harvest measurement of dry matter (t/ha) for plots without Folicur.

Variety	N rate	Total pla	ant dry ma	tter (t/ha)	Seed dr	y matter (t/l	ha)	Stem di	y matter (t	:/ha)	Pod wa	II dry matte	er (t/ha)
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	8.43		8.43	1.92		1.92	2.82		2.82	3.69		3.69
Excalibur	240	18.55	15.10	16.82	4.16	3.86	4.01	6.80	5.58	6.19	7.59	5.66	6.62
Excalibur	Mean	13.49	11.76	12.63	3.04	2.89	2.97	4.81	4.20	4.50	5.64	4.68	5.16
PR45D03	0	8.98		8.98	1.69		1.69	3.04		3.04	4.25		4.25
PR45D03	240	15.47	16.43	15.95	3.74	3.73	3.73	4.99	5.84	5.42	6.74	6.86	6.80
PR45D03	Mean	12.22	12.70	12.46	2.71	2.71	2.71	4.02	4.44	4.23	5.49	5.55	5.52
Exc+D03	0	8.70		8.70	1.80		1.80	2.93		2.93	3.97		3.97
Exc+D03	240	17.01	15.76	16.39	3.95	3.79	3.87	5.90	5.71	5.80	7.16	6.26	6.71
Exc+D03	Mean	12.86	12.23	12.54	2.88	2.80	2.84	4.41	4.32	4.37	5.57	5.11	5.34
EXOTEGO	Wouli	12.00	12.20	12.01	2.00	2.00	2.01		1.02	1.07	0.07	0.11	0.01
Treatment		df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.
Variety		14	0.733	0.826	14	0.0859	0.010	14	0.280	0.345	14	0.451	0.432
N manageme	nt	14	0.733	0.410	14	0.0859	0.380	14	0.280	0.745	14	0.451	0.333
Nrate		14	0.733	<0.001	14	0.0859	<0.001	14	0.280	<0.001	14	0.451	<0.001
Var x Man		14	1.037	0.155	14	0.1214	0.418	14	0.395	0.086	14	0.638	0.273
Var x Nrate		14	1.037	0.349	14	0.1214	0.788	14	0.395	0.096	14	0.638	0.684
Man x Nrate		14	1.037	0.410	14	0.1214	0.380	14	0.395	0.745	14	0.638	0.333
Var x Man x N	Vrate	14	1.466	0.155	14	0.1717	0.418	14	0.559	0.086	14	0.902	0.273

Table 41. Rosemaund. Pre-harvest measurement of dry matter (t/ha) for plots without Folicur.

Variety	N rate	Total pla	ant dry ma	itter (t/ha)	Seed dr	y matter (t/	ha)	Stem d	ry matter (t	t/ha)	Pod wa	ll dry matte	r (t/ha)
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	7.55		7.55	2.51		2.51	2.86		2.86	2.18		2.18
Excalibur	240	13.07	12.37	12.72	4.70	4.72	4.71	4.68	4.35	4.51	3.69	3.30	3.50
Excalibur	Mean	10.31	9.96	10.14	3.60	3.62	3.61	3.77	3.60	3.69	2.94	2.74	2.84
PR45D03	0	7.60		7.60	2.76		2.76	2.82		2.82	2.02		2.02
PR45D03	240	11.67	11.87	11.77	5.08	4.98	5.03	3.09	3.49	3.29	3.50	3.40	3.45
PR45D03	Mean	9.63	9.73	9.68	3.92	3.87	3.89	2.96	3.16	3.06	2.76	2.71	2.73
Exc+D03	0	7.58		7.58	2.64		2.64	2.84		2.84	2.10		2.10
Exc+D03	240	12.37	12.12	12.24	4.89	4.85	4.87	3.89	3.92	3.90	3.60	3.35	3.47
Exc+D03	Mean	9.97	9.85	9.91	3.76	3.74	3.75	3.36	3.38	3.37	2.85	2.72	2.79
T11		Lar	055	E D.,	Lac	OED	E D.	Luc	055	E D.	Lac	OED	E D
Treatment		df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.
Variety		21	0.413	0.285	21	0.0931	0.006	21	0.324	0.066	21	0.1077	0.333
N manageme	ent	21	0.413	0.767	21	0.0931	0.851	21	0.324	0.959	21	0.1077	0.265
Nrate		21	0.413	<0.001	21	0.0931	<0.001	21	0.324	0.004	21	0.1077	<0.001
Var x Man		21	0.583	0.591	21	0.1317	0.752	21	0.458	0.579	21	0.1523	0.508
Var x Nrate		21	0.583	0.245	21	0.1317	0.683	21	0.458	0.083	21	0.1523	0.596
Man x Nrate		21	0.583	0.767	21	0.1317	0.851	21	0.458	0.959	21	0.1523	0.265
Var x Man x	Nrate	21	0.825	0.591	21	0.1862	0.752	21	0.648	0.579	21	0.2153	0.508

Crop N content

At Terrington, increasing N rate from 0 to 240 kg N/ha increased the total N uptake from 44 to 153 kg N/ha (Table 43). Increasing N rate also significantly increased the amount of N in the seed, and combined stems and pod walls. These effects were caused by a combination of greater biomass (Table 39) and greater tissue N concentration (Table 42). There were no significant differences between Excalibur and PR45D03 in total N uptake or the amount of N taken off in the seed, but Excalibur did show a greater response to increased N rate in seed N concentration. There were no significant effects of Canopy Management.

At High Mowthorpe, increasing N rate from 0 to 240 kg N/ha increased the total N uptake from 101 to 238 kg N/ha (Table 45). Increasing N rate also significantly increased the amount of N in the seed, and combined stems and pod walls. These effects were caused by a combination of greater biomass (Table 40) and greater tissue N concentration (Table 44). Excalibur had a significantly higher seed N yield, due to higher biomass rather than higher tissue N concentration. PR45D03 had significantly higher tissue N concentration in the stems and pod walls than Excalibur. There was no difference in total N uptake between the varieties, but the N offtake in the seed of Excalibur was about 8 kg N/ha greater than PR45D03. There were no significant effects of Canopy Management.

At Rosemaund, increasing N rate from 0 to 240 kg N/ha increased the total N uptake from 91 to 226 kg N/ha (Table 47). Increasing N rate also significantly increased the amount of N in the seed, and combined stems and pod walls. These effects were caused by a combination of greater biomass (Table 41) and greater tissue N concentration (Table 46). Variety had significant effects on N concentration, with Excalibur having higher seed N concentration, and PR45D03 higher N concentration in other parts of the plant. PR45D03 also showed a significantly greater N response in N concentration of stems and pod walls. There were no significant differences between Excalibur and PR45D03 in total N uptake or the amount of N taken off in the seed. There were no significant effects of Canopy Management.

Table 42. Terrington. Pre-harvest measurement of nitrogen concentration for plots without Folicur.

Variety	N rate	Seed N	%		Stem and pod wall N %			
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	
Excalibur	0	2.235		2.235	0.532		0.532	
Excalibur	240	2.872	2.969	2.920	0.702	0.755	0.728	
Excalibur	Mean	2.553	2.602	2.577	0.617	0.643	0.630	
PR45D03	0	2.465		2.465	0.505		0.505	
PR45D03	240	2.651	2.766	2.709	0.797	0.833	0.815	
PR45D03	Mean	2.553	2.610	2.582	0.651	0.669	0.660	
Exc+D03	0	2.345		2.345	0.519		0.519	
Exc+D03	240	2.762	2.867	2.814	0.749	0.794	0.772	
Exc+D03	Mean	2.553	2.606	2.579	0.634	0.656	0.645	
Treatment		df	SED	F pr.	df	SED	F pr.	
Variety		21	0.0975	0.967	21	0.0399	0.462	
N manageme	ent	21	0.0975	0.593	21	0.0399	0.585	
Nrate		21	0.0975	<0.001	21	0.0399	<0.001	
Var x Man		21	0.1378	0.965	21	0.0564	0.916	
Var x Nrate		21	0.1378	0.038	21	0.0564	0.169	
Man x Nrate		21	0.1378	0.593	21	0.0564	0.585	
Var x Man x I	Vrate	21	0.1949	0.965	21	0.0798	0.916	

 Table 43. Terrington. Pre-harvest measurement of N content for plots without Folicur.

Variety	N rate	Seed N yield (kg/ha)				Stem and pod wall N yield (kg/ha)			Total N yield (kg/ha)		
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	
Excalibur	0	26.0		26.0	13.0		13.0	39.1		39.1	
Excalibur	240	108.6	111.1	109.8	40.7	40.4	40.6	149.3	151.5	150.4	
Excalibur	Mean	67.3	68.5	67.9	26.9	26.7	26.8	94.2	95.3	94.7	
PR45D03	0	30.0		30.0	19.0		19.0	49.1		49.1	
PR45D03	240	104.4	110.6	107.5	45.6	52.2	48.9	150.0	162.8	156.4	
PR45D03	Mean	67.2	70.3	68.8	32.3	35.6	34.0	99.6	105.9	102.7	
Exc+D03	0	28.0		28.0	16.0		16.0	44.1		44.1	
Exc+D03	240	106.5	110.8	108.7	43.2	46.3	44.7	149.7	157.1	153.4	
Exc+D03	Mean	67.3	69.4	68.3	29.6	31.2	30.4	96.9	100.6	98.7	
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	
Variety		21	4.26	0.841	21	5.55	0.212	21	7.99	0.327	
N manageme	ent	21	4.26	0.617	21	5.55	0.779	21	7.99	0.644	
Nrate		21	4.26	<0.001	21	5.55	<0.001	21	7.99	<0.001	
Var x Man		21	6.03	0.832	21	7.84	0.760	21	11.29	0.745	
Var x Nrate		21	6.03	0.468	21	7.84	0.837	21	11.29	0.806	
Man x Nrate		21	6.03	0.617	21	7.84	0.779	21	11.29	0.644	
Var x Man x	Nrate	21	8.52	0.832	21	11.09	0.760	21	15.97	0.745	

Table 44. High Mowthorpe. Pre-harvest measurement of nitrogen concentration for plots without Folicur.

Variety	N rate	Seed N	۱%		Stem and pod wall N %			
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	
							-	
Excalibur	0	2.61		2.61	0.58		0.58	
Excalibur	240	2.87	2.99	2.93	0.93	0.90	0.92	
Excalibur	Mean	2.74	2.80	2.77	0.76	0.74	0.75	
PR45D03	0	2.58		2.58	0.99		0.99	
PR45D03	240	2.85	2.92	2.88	1.04	1.06	1.05	
PR45D03	Mean	2.71	2.75	2.73	1.02	1.03	1.02	
Exc+D03	0	2.59		2.59	0.79		0.79	
Exc+D03	240	2.86	2.95	2.91	0.99	0.98	0.98	
Exc+D03	Mean	2.73	2.77	2.75	0.89	0.88	0.89	
Treatment		df	SED	F pr.	df	SED	F pr.	
Variety		14	0.0613	0.506	14	0.0996	0.015	
N manageme	ent	14	0.0613	0.473	14	0.0996	0.986	
Nrate		14	0.0613	<0.001	14	0.0996	0.068	
Var x Man		14	0.0867	0.835	14	0.1409	0.890	
Var x Nrate		14	0.0867	0.938	14	0.1409	0.184	
Man x Nrate		14	0.0867	0.473	14	0.1409	0.986	
Var x Man x I	Vrate	14	0.1226	0.835	14	0.1992	0.890	

Table 45. High Mowthorpe. Pre-harvest measurement of N content for plots without Folicur.

Variety	N rate	Seed N yield (kg/ha)			Stem and pod wall N yield (kg/ha)			Total N yield (kg/ha)		
	kg/ha	Conv	CM	Mean	Conv	СМ	Mean	Conv	CM	Mean
Excalibur	0	50.1		50.1	38.3		38.3	88.4		88.4
Excalibur	240	119.6	115.4	117.5	137.0	102.0	119.5	256.6	217.4	237.0
Excalibur	Mean	84.8	82.8	83.8	87.7	70.1	78.9	172.5	152.9	162.7
PR45D03	0	43.3		43.3	71.1		71.1	114.4		114.4
PR45D03	240	107.2	108.3	107.8	124.1	137.3	130.7	231.3	245.6	238.5
PR45D03	Mean	75.3	75.8	75.5	97.6	104.2	100.9	172.9	180.0	176.5
Exc+D03	0	46.7		46.7	54.7		54.7	101.4		101.4
				-			_			-
Exc+D03	240	113.4	111.9	112.6	130.5	119.7	125.1	243.9	231.5	237.7
Exc+D03	Mean	80.1	79.3	79.7	92.6	87.2	89.9	172.7	166.5	169.6
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		14	2.81	0.011	14	14.03	0.139	14	15.27	0.383
N manageme	ent	14	2.81	0.790	14	14.03	0.704	14	15.27	0.691
Nrate		14	2.81	< 0.001	14	14.03	< 0.001	14	15.27	< 0.001
Var x Man		14	3.98	0.650	14	19.84	0.404	14	21.59	0.396
Var x Nrate		14	3.98	0.603	14	19.84	0.456	14	21.59	0.435
Man x Nrate		14	3.98	0.790	14	19.84	0.704	14	21.59	0.691
Var x Man x	Nrate	14	5.62	0.650	14	28.06	0.404	14	30.53	0.396

Table 46. Rosemaund. Pre-harvest measurement of nitrogen concentration for plots without Folicur.

Variety	N rate	Seed N	%		Stem a	nd pod wall	N %
	kg/ha	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	2.507		2.507	0.504		0.504
Excalibur	240	3.264	3.287	3.276	0.746	0.811	0.779
Excalibur	Mean	2.886	2.897	2.891	0.625	0.658	0.641
PR45D03	0	2.348		2.348	0.593		0.593
PR45D03	240	3.225	3.183	3.204	1.140	1.051	1.096
PR45D03	Mean	2.786	2.766	2.776	0.867	0.822	0.845
Exc+D03	0	2.428		2.428	0.549		0.549
Exc+D03	240	3.244	3.235	3.240	0.943	0.931	0.937
Exc+D03	Mean	2.836	2.831	2.834	0.746	0.740	0.743
Treatment		df	SED	F pr.	df	SED	F pr.
Variety		21	0.0423	0.012	21	0.0511	<0.001
N manageme	ent	21	0.0423	0.916	21	0.0511	0.909
Nrate		21	0.0423	<0.001	21	0.0511	<0.001
Var x Man		21	0.0598	0.705	21	0.0723	0.459
Var x Nrate		21	0.0598	0.312	21	0.0723	0.037
Man x Nrate		21	0.0598	0.916	21	0.0723	0.909
Var x Man x	Nrate	21	0.0845	0.705	21	0.1022	0.459

 Table 47. Rosemaund. Pre-harvest measurement of N content for plots without Folicur.

Variety	N rate	Seed N yield (kg/ha)				Stem and pod wall N yield (kg/ha)			Total N yield (kg/ha))		
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	
Excalibur	0	62.8		62.8	25.3		25.3	88.1		88.1	
Excalibur	240	153.7	155.3	154.5	63.1	62.6	62.9	216.8	218.0	217.4	
Excalibur	Mean	108.2	109.1	108.6	44.2	44.0	44.1	152.4	153.0	152.7	
PR45D03	0	64.7		64.7	28.3		28.3	93.0		93.0	
PR45D03	240	163.5	158.6	161.1	76.2	72.5	74.4	239.7	231.1	235.4	
PR45D03	Mean	114.1	111.7	112.9	52.3	50.4	51.3	166.4	162.1	164.2	
Exc+D03	0	63.7		63.7	26.8		26.8	90.5		90.5	
Exc+D03	240	158.6	157.0	157.8	69.6	67.6	68.6	228.3	224.5	226.4	
Exc+D03	Mean	111.2	110.4	110.8	48.2	47.2	47.7	159.4	157.5	158.5	
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	
Variety		21	3.64	0.258	21	5.58	0.207	21	8.52	0.192	
N manageme	ent	21	3.64	0.823	21	5.58	0.855	21	8.52	0.830	
Nrate		21	3.64	<0.001	21	5.58	<0.001	21	8.52	<0.001	
Var x Man		21	5.15	0.657	21	7.88	0.886	21	12.05	0.777	
Var x Nrate		21	5.15	0.527	21	7.88	0.457	21	12.05	0.449	
Man x Nrate		21	5.15	0.823	21	7.88	0.855	21	12.05	0.830	
Var x Man x	Nrate	21	7.28	0.657	21	11.15	0.886	21	17.04	0.777	

Seed size and seed number

At Terrington, Excalibur had a significantly higher thousand seed weight than PR45D03 by 0.4 g (Table 48). N rate also had a significant effect on seed weight. There were no significant effects of Folicur or Canopy Management. Seed number was significantly affected by Folicur, variety and nitrogen rate (Table 49), showing that that the yield benefit of Folicur treatment must have been caused by increasing seed weight, as seed number was reduced. The yield increase resulting from increased N was most closely related to increases in seed number. The greater seed weight of Excalibur relative to PR45D03 was balanced by higher seed numbers in PR45D03, resulting no significant difference in yield between the varieties.

At High Mowthorpe, Excalibur had a significantly higher thousand seed weight than PR45D03 by 0.14 g (Table 50). Inreased N rate reduced seed weight. There were no significant effects of Folicur or Canopy Management. Seed number was significantly increased by variety and greater nitrogen rate (Table 51), showing that the greater yield of Excalibur relative to PR45D03 was caused by both increased seed number and seed size. The yield increase resulting from increased N was most closely related to increases in seed number.

At Rosemaund, as at Terrington, Excalibur had a significantly higher thousand weight than PR45D03 by 0.4 g (Table 52). Increasing N rate also increased seed weight. There were no significant effects of Folicur or Canopy Management. Seed number was significantly affected by Folicur, variety and nitrogen rate (Table 53), showing that that the yield reduction with Folicur treatment was caused mainly by reducing seed number. The greater yield of PR45D03 relative to Excalibur was caused by greater seed number outweighing the effect of lower seed weight. The yield increase resulting from increased N was most closely related to increases in seed number.

 Table 48. Terrington. Thousand seed weight.

Factor F	
Excalibur 120 5.04 5.12 5.08 5.11 5.25 5.18 5.08 5.18 Excalibur 240 5.40 5.32 5.36 5.38 5.52 5.45 5.39 5.42 Excalibur 360 5.48 5.53 5.50 5.56 5.44 5.50 5.52 5.48 Excalibur Mean 5.32 5.33 5.32 5.39 5.43 5.41 5.35 5.38 PR45D0 3 120 4.77 4.84 4.81 4.81 4.84 4.82 4.79 4.84 PR45D0 3 360 4.91 4.94 4.93 4.97 4.91 4.94 4.93 PR45D0 3 360 4.96 4.92 4.94 4.88 5.05 4.96 4.92 4.99 PR45D0 3 Mean 4.94 4.95 4.95 4.95 4.95 4.99 4.97 4.95 4.97 Exc+D03 120 4.91 <	Mean
Excalibur 120 5.04 5.12 5.08 5.11 5.25 5.18 5.08 5.18 Excalibur 240 5.40 5.32 5.36 5.38 5.52 5.45 5.39 5.42 Excalibur 360 5.48 5.53 5.50 5.56 5.44 5.50 5.52 5.48 Excalibur Mean 5.32 5.33 5.32 5.39 5.43 5.41 5.35 5.38 PR45D0 3 120 4.77 4.84 4.81 4.81 4.84 4.82 4.79 4.84 PR45D0 3 360 4.91 4.94 4.93 4.97 4.91 4.94 4.93 PR45D0 3 360 4.96 4.92 4.94 4.88 5.05 4.96 4.92 4.99 PR45D0 3 Mean 4.94 4.95 4.95 4.95 4.95 4.99 4.97 4.95 4.97 Exc+D03 120 4.91 <	5.40
Excalibur 240 Excalibur 5.40 5.40 5.32 5.36 5.50 5.56 5.44 5.50 5.52 5.48 5.39 5.42 5.30 5.30 5.30 5.30 5.30 5.30 5.44 5.50 5.35 5.38 5.52 5.48 5.52 5.48 5.50 5.52 5.48 5.30 5.40 5.50 5.30 5.30 5.40 5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.41 5.35 5.38 PR45D0 3 PR45D0 5.24 5.24 5.24 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20	5.43
Excalibur 360 Excalibur 5.48 Mean 5.53 5.32 5.50 5.39 5.44 5.50 5.41 5.52 5.38 5.48 5.32 5.48 5.32 5.44 5.50 5.38 5.52 5.38 5.48 5.32 5.48 5.32 5.48 5.32 5.48 5.32 5.48 5.32 5.48 5.32 5.48 5.32 5.48 5.32 5.48 5.32 5.48 5.32 5.48 5.32 5.38 PR45D0 3 PR45D0	5.13 5.40
Excalibur Mean 5.32 5.33 5.32 5.39 5.43 5.41 5.35 5.38 PR45D0 3	5.50
3 0 5.11 5.11 5.14 5.14 5.13 PR45D0 3 120 4.77 4.84 4.81 4.81 4.84 4.82 4.79 4.84 PR45D0 3 240 4.91 4.94 4.93 4.97 4.91 4.94 4.93 PR45D0 3 360 4.96 4.92 4.94 4.88 5.05 4.96 4.92 4.99 PR45D0 3 Mean 4.94 4.95 4.95 4.95 4.99 4.97 4.95 4.97 Exc+D03 0 5.24 5.24 5.32 5.32 5.28 Exc+D03 120 4.91 4.98 4.94 4.96 5.05 5.00 4.93 5.01 Exc+D03 240 5.16 5.13 5.14 5.18 5.22 5.20 5.17 5.17 Exc+D03 360 5.22 5.22 5.22 5.22 5.24 5.23 5.22 5.23	5.37
3 0 5.11 5.11 5.14 5.14 5.13 PR45D0 3 120 4.77 4.84 4.81 4.81 4.84 4.82 4.79 4.84 PR45D0 3 240 4.91 4.94 4.93 4.97 4.91 4.94 4.93 PR45D0 3 360 4.96 4.92 4.94 4.88 5.05 4.96 4.92 4.99 PR45D0 3 Mean 4.94 4.95 4.95 4.95 4.99 4.97 4.95 4.97 Exc+D03 120 4.91 4.98 4.94 4.96 5.05 5.00 4.93 5.01 Exc+D03 240 5.16 5.13 5.14 5.18 5.22 5.20 5.17 5.17 Exc+D03 360 5.22 5.22 5.22 5.22 5.24 5.23 5.22 5.23	
3 120 4.77 4.84 4.81 4.81 4.84 4.82 4.79 4.84 PR45D0 240 4.91 4.94 4.93 4.97 4.91 4.94 4.94 4.93 PR45D0 360 4.96 4.92 4.94 4.88 5.05 4.96 4.92 4.99 PR45D0 Mean 4.94 4.95 4.95 4.95 4.99 4.97 4.95 4.97 Exc+D03 0 5.24 5.24 5.32 5.32 5.28 5.28 Exc+D03 120 4.91 4.98 4.94 4.96 5.05 5.00 4.93 5.01 Exc+D03 240 5.16 5.13 5.14 5.18 5.22 5.20 5.17 5.17 Exc+D03 360 5.22 5.22 5.22 5.22 5.24 5.23 5.22 5.23	5.13
PR45D0 3	4.82
PR45D0 3 360 4.96 4.92 4.94 4.88 5.05 4.96 4.92 4.99 PR45D0 3 Mean 4.94 4.95 4.95 4.95 4.99 4.97 4.95 4.97 Exc+D03 0 5.24 5.24 5.32 5.32 5.28 Exc+D03 120 4.91 4.98 4.94 4.96 5.05 5.00 4.93 5.01 Exc+D03 240 5.16 5.13 5.14 5.18 5.22 5.20 5.17 5.17 Exc+D03 360 5.22 5.22 5.22 5.22 5.22 5.24 5.23 5.22 5.23	4.93
3	
3 Mean 4.94 4.95 4.95 4.95 4.99 4.97 4.95 4.97 Exc+D03 0 5.24 5.24 5.32 5.32 5.28 Exc+D03 120 4.91 4.98 4.94 4.96 5.05 5.00 4.93 5.01 Exc+D03 240 5.16 5.13 5.14 5.18 5.22 5.20 5.17 5.17 Exc+D03 360 5.22 5.22 5.22 5.22 5.24 5.23 5.22 5.23	4.95
Exc+D03 120 4.91 4.98 4.94 4.96 5.05 5.00 4.93 5.01 Exc+D03 240 5.16 5.13 5.14 5.18 5.22 5.20 5.17 5.17 Exc+D03 360 5.22 5.22 5.22 5.22 5.24 5.23 5.22 5.23	4.96
Exc+D03 240 5.16 5.13 5.14 5.18 5.22 5.20 5.17 5.17 Exc+D03 360 5.22 5.22 5.22 5.22 5.24 5.23 5.22 5.23	5.25
Exc+D03 360 5.22 5.22 5.22 5.22 5.24 5.23 5.22 5.23	4.97
Exc+D03 360 5.22 5.22 5.22 5.22 5.24 5.23 5.22 5.23	5.17
	5.23
Exorpoo Woall 0.10 0.14 0.14 0.17 0.21 0.18 0.10 0.17	5.16
Treetment of SED Eng	
Treatment df SED F pr.	
Folicur 93 0.0337 0.124	
Variety 93 0.0337 <0.001	
N management 93 0.0337 0.459	
Nrate 93 0.0477 <0.001	
Fol x Var 93 0.0477 0.348	
Fol x Man 93 0.0477 0.693	
Var x Man 93 0.0477 0.981	
Fol x Nrate 93 0.0674 0.869	
Var x Nrate 93 0.0674 0.027 Man x Nrate 93 0.0674 0.832	
Man x Nrate 93 0.0674 0.832 Fol x Var x Man 93 0.0674 0.945	
Fol x Var x Nrate 93 0.0953 0.902	
Fol x Man x Nrate 93 0.0953 0.985	
Var x Man x Nrate 93 0.0953 0.832	
Fol x Var x Man x Nrate 93 0.1348 0.335	

Table 49. Terrington. Seeds per m².

Variety	N rate	No Folio	cur		Folicur (0.5 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Excalibur	0	23971		23971	18762		18762	21367		21367
Excalibur	120	67924	62841	65382	62643	58984	60813	65283	60912	63098
Excalibur	240	76516	77362	76939	75935	72554	74244	76225	74958	75592
Excalibur	360	82623	75242	78933	79791	73786	76788	81207	74514	77860
Excalibur	Mean	62759	59854	61306	59283	56021	57652	61021	57938	59479
PR45D03	0	26091		26091	24749		24749	25420		25420
PR45D03	120	69937	69065	69501	71835	70091	70963	70886	69578	70232
PR45D03	240	88806	88661	88733	82540	83430	82985	85673	86046	85859
PR45D03	360	91462	84226	87844	85892	82211	84052	88677	83219	85948
PR45D03	Mean	69074	67011	68042	66254	65120	65687	67664	66066	66865
Exc+D03	0	25031		25031	21756		21756	23393		23393
Exc+D03	120	68930	65953	67442	67239	64537	65888	68085	65245	66665
Exc+D03	240	82661	83012	82836	79238	77992	78615	80949	80502	80726
Exc+D03	360	87043	79734	83388	82841	77999	80420	84942	78866	81904
Exc+D03	Mean	65916	63432	64674	62768	60571	61670	64342	62002	63172
Treatment			df	SED	F pr.					
Folicur			93	1511.2	0.050					
Variety			93	1511.2	<0.001					
N manager	ment		93	1511.2	0.125					
Nrate			93	2137.2	<0.001					
Fol x Var			93	2137.2	0.668					
Fol x Man			93	2137.2	0.925					
Var x Man			93	2137.2	0.624					
Fol x Nrate	:		93	3022.4	0.940					
Var x Nrate)		93	3022.4	0.538					
Man x Nrat	Man x Nrate			3022.4	0.471					
Fol x Var x	Fol x Var x Man			3022.4	0.832					
Fol x Var x Nrate			93	4274.3	0.672					
Fol x Man	Fol x Man x Nrate			4274.3	0.973					
Var x Man	Var x Man x Nrate			4274.3	0.988					
Fol x Var x	Man x N	rate	93	6044.8	0.975					

[†] calculated from combine seed yield

 Table 50. High Mowthorpe. Thousand seed weight.

Recalibur Con	Variety	N	No Fo	licur		Folicur (0.5 l/ha)	Conv	CM	Grand
Excalibur 0 6.05 6.05 6.00 6.00 6.03 6.03 6.03 Excalibur 120 5.61 5.62 5.62 5.64 5.55 5.60 5.62 5.59 5.61 Excalibur 360 5.28 5.16 5.22 5.65 5.37 5.51 5.47 5.37 5.51 5.47 5.37 5.51 5.47 5.37 5.51 5.47 5.37 5.51 5.47 5.37 5.51 5.47 5.37 5.51 5.47 5.37 5.51 5.47 5.37 5.61 5.59 5.65 5.37 5.60 5.61 5.40 5.61 5.40 5.41 5.27 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.46 5.45 5.46 5.43 5.46 5.44 5.44 5.46 5.45		rate	Con	CM	Moon	Conv	CM	Mea	Mea	Mea	Moon
Excalibur Low Excalibur 240 5.61 5.62 5.62 5.64 5.55 5.60 5.62 5.59 5.41 Excalibur Scalibur Scalibur Mean Scali		kg/na	٧	CIVI	iviean	Conv	CIVI	n	n	n	iviean
Excalibur Low Excalibur 240 5.61 5.62 5.62 5.64 5.55 5.60 5.62 5.59 5.41 Excalibur Scalibur Scalibur Mean Scali		_									
Excalibur Excalibur Excalibur Excalibur Sature Sa				5 00						5 50	
Excalibur Excalibur Excalibur Excalibur Mean S.57 5.86 S.57 S.61 S.59 S.65 S.59 S.63 S.62 S.60 S.61 S.61 S.69 S.67 S.59 S.63 S.62 S.60 S.61 S.61 S.60 S.61 S.60 S.61 S.60 S.60 S.61 S.60 S.60 S.60 S.60 S.60 S.60 S.60 S.60											
Excalibur Mean 5.57 5.61 5.59 5.67 5.59 5.63 5.62 5.60 5.61 PR45D0 3											
PR45D0 3											
3	LXCalibai	Wican	0.07	0.01	0.00	0.07	0.00	0.00	0.02	0.00	0.01
PR45D0 3 120 5.46 5.45 5.46 5.43 5.46 5.44 5.44 5.46 5.45 PR45D0 3 240 5.41 5.21 5.31 5.30 5.31 5.30 5.35 5.26 5.31 PR45D0 3 360 5.31 5.29 5.30 5.34 5.42 5.38 5.32 5.36 5.34 PR45D0 3 Mean 5.51 5.46 5.49 5.45 5.48 5.46 5.48 5.47 5.47 Exc+D03 0 5.96 5.96 5.86 5.86 5.91 5.91 5.91 Exc+D03 120 5.53 5.54 5.54 5.53 5.50 5.52 5.53 5.52 5.53 Exc+D03 240 5.37 5.40 5.39 5.34 5.37 5.36 5.36 5.39 5.37 Exc+D03 360 5.30 5.23 5.26 5.50 5.40 5.45 5.40 5.31 5.35 Exc+D03 Mean 5.54 5.53 5.54 5.56 5.50 5.50 5.55 5.55 5.53 5.54 Treatment df SED F pr. Folicur 93 0.0400 0.818 Variety 93 0.0400 0.661 Nrate 93 0.0565 0.421 Fol x Var 93 0.0565 0.421 Fol x Var 93 0.0565 0.421 Fol x Nrate 93 0.0799 0.075 Var x Nrate 93 0.0799 0.791 Fol x Var x Nrate 93 0.0799 0.791 Fol x Var x Nrate 93 0.1130 0.997 Var x Man x Nrate 93 0.1130 0.997	PR45D0	0	E 07		E 07	F 70		F 70	E 90		F 90
3		U	5.67		5.67	5.72		5.72	5.60		5.60
PR45D0 3		120	5.46	5.45	5.46	5.43	5.46	5.44	5.44	5.46	5.45
3 240 5.41 5.21 5.31 5.30 5.31 5.30 5.35 5.26 5.31 PR45D0 3 60 5.31 5.29 5.30 5.34 5.42 5.38 5.32 5.36 5.34 PR45D0 3 0 5.51 5.46 5.49 5.45 5.48 5.46 5.48 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47											
PR45D0 3 PR45D0 3 360 8 5.31 5.29 5.30 5.34 5.42 5.38 5.32 5.36 5.34 PR45D0 3 Mean 5.51 5.46 5.49 5.45 5.48 5.46 5.48 5.47 5.47 Exc+D03 0 5.96 5.96 5.86 5.86 5.96 5.91 5.91 Exc+D03 120 5.53 5.54 5.54 5.53 5.50 5.52 5.53 5.52 5.53 Exc+D03 240 5.37 5.40 5.39 5.34 5.37 5.36 5.39 5.37 Exc+D03 Mean 5.54 5.53 5.56 5.50 5.40 5.45 5.40 5.31 5.35 Exc+D03 Mean 5.54 5.53 5.56 5.50 5.40 5.45 5.53 5.54 Folicur 93 0.0400 0.818 Var Var 93 0.0400 0.661											

Table 51. High Mowthorpe. seeds/m².

Variety	N rate	No Folio	cur		Folicur (0.5 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Excalibur	0	37066		37066	37378		37378	37222		37222
Excalibur	120	70851	67710	69281	68598	69725	67498	69725	67498	68611
Excalibur	240	87503	77018	82260	87279	87391	82180	87391	82180	84786
Excalibur	360	89671	86872	88271	83493	86582	86503	86582	86503	86542
Excalibur	Mean	71273	67166	69220	69187	70230	68351	70230	68351	69290
PR45D03	0	33185		33185	35773		35773	34479		34479
PR45D03	120	70541	64537	67539	67083	65669	66376	68812	65103	66958
PR45D03	240	75599	79460	77529	77565	78936	78251	76582	79198	77890
PR45D03	360	83478	84262	83870	83751	84380	84066	83615	84321	83968
PR45D03	Mean	65701	65361	65531	66043	66190	66116	65872	65775	65824
Exc+D03	0	35126		35126	36575		36575	35850		35850
Exc+D03	120	70696	66124	68410	67841	66478	67159	69268	66301	67784
Exc+D03	240	81551	78239	79895	82422	83140	82781	81987	80689	81338
Exc+D03	360	86575	85567	86071	83622	85257	84439	85098	85412	85255
Exc+D03	Mean	68487	66264	67375	67615	67862	67739	68051	67063	67557
Treatment			df	SED	F pr.					
Folicur			93	847.2	0.669					
Variety			93	847.2	<0.001					
N manager	ment		93	847.2	0.247					
Nrate			93	1198.1	<0.001					
Fol x Var			93	1198.1	0.794					
Fol x Man			93	1198.1	0.148					
Var x Man			93	1198.1	0.296					
Fol x Nrate			93	1694.3	0.185					
Var x Nrate)		93	1694.3	0.135					
Man x Nrat	e		93	1694.3	0.510					
Fol x Var x Man		93	1694.3	0.245						
Fol x Var x	Fol x Var x Nrate			2396.1	0.370					
Fol x Man	Fol x Man x Nrate			2396.1	0.851					
	Var x Man x Nrate			2396.1	0.222					
Fol x Var x	Man x N	rate	93	3388.6	0.370					

 Table 52. Rosemaund. Thousand seed weight.

Variety	N rate	No Fo	licur		Folicur (0.5 l/ha)	Conv	CM	Grand
	kg/ha	Con v	СМ	Mean	Conv	СМ	Mea n	Mea n	Mea n	Mean
Excalibur	0	5.78		5.78	5.77		5.77	5.78		5.78
Excalibur	120	5.76	5.85	5.80	5.75	5.79	5.77	5.75	5.82	5.79
Excalibur	240	6.02	6.11	6.06	6.23	6.20	6.21	6.13	6.15	6.14
Excalibur	360	6.23	6.21	6.22	6.21	6.42	6.32	6.22	6.32	6.27
Excalibur	Mean	5.95	5.99	5.97	5.99	6.05	6.02	5.97	6.02	5.99
PR45D0	0	5.38		5.38	5.56		5.56	5.47		5.47
3 PR45D0										
3	120	5.26	5.27	5.26	5.37	5.27	5.32	5.31	5.27	5.29
PR45D0 3	240	5.83	5.62	5.72	5.71	5.88	5.79	5.77	5.75	5.76
PR45D0 3	360	5.86	6.11	5.98	5.59	5.85	5.72	5.72	5.98	5.85
PR45D0 3	Mean	5.58	5.59	5.59	5.56	5.64	5.60	5.57	5.62	5.59
3		0.00	0.00	0.00	0.50	3.04	5.00	0.07	5.02	0.00
Exc+D03	0	5.58		5.58	5.67		5.67	5.62		5.62
Exc+D03	120	5.51	5.56	5.53	5.56	5.53	5.55	5.53	5.55	5.54
Exc+D03	240	5.93	5.86	5.89	5.97	6.04	6.00	5.95	5.95	5.95
Exc+D03	360	6.05	6.16	6.10	5.90	6.14	6.02	5.97	6.15	6.06
Exc+D03	Mean	5.77	5.79	5.78	5.77	5.84	5.81	5.77	5.82	5.79
Treatment			df	SED	F pr.					
Folicur			93	0.0506	0.548					
Variety			93	0.0506	<0.001					
N manage	ment		93	0.0506	0.350					
Nrate			93	0.0715	< 0.001					
Fol x Var			93	0.0715	0.704					
Fol x Man			93	0.0715	0.646					
Var x Man			93	0.0715	0.985					
Fol x Nrate)		93	0.1011	0.541					
Var x Nrate		93	0.1011	0.612						
Man x Nrate		93	0.1011	0.541						
Fol x Var x Man		93	0.1011	0.775						
Fol x Var x Nrate		93	0.1430	0.244						
Fol x Man x Nrate		93 93	0.1430	0.861						
	Var x Man x Nrate Fol x Var x Man x Nrate			0.1430	0.800					
Fol x Var x	wan x N	vrate	93	0.2023	0.601					

Table 53. Rosemaund. seeds/m² (calculated from thousand seed weight and combine seed yield).

Variety	N rate	No Folio	cur		Folicur (0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	СМ	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	0	47961		47961	44793		44793	46377		46377
Excalibur	120	84461	82952	83707	79412	77033	78222	81936	79993	80964
Excalibur	240	85905	84995	85450	82301	83671	82986	84103	84333	84218
Excalibur	360	87312	90038	88675	82907	82413	82660	85109	86226	85667
Excalibur	Mean	76410	76487	76448	72353	71977	72165	74381	74232	74307
DD 45D02	0	E0040		FC240	40000		40000	E4E00		E4E00
PR45D03	0	56318	04440	56318	46863	00040	46863	51590	00446	51590
PR45D03	120	95869	94413	95141	85133	89819	87476	90501	92116	91308
PR45D03	240	95624	97465	96544	89548	87820	88684	92586	92643	92614
PR45D03 PR45D03	360 Mean	98176 86497	95528 85931	96852 86214	94295 78960	86248 77688	90271 78324	96235 82728	90888 81809	93562 82269
FR45D05	Mean	00497	65931	00214	76900	11000	70324	02120	01009	02209
Exc+D03	0	52139		52139	43282		43282	47711		47711
Exc+D03	120	90165	88683	89424	77702	78791	78246	83933	83737	83835
Exc+D03	240	90764	91230	90997	81151	80982	81066	85958	86106	86032
Exc+D03	360	92744	92783	92764	83679	79645	81662	88211	86214	87213
Exc+D03	Mean	81453	81209	81331	71453	70675	71064	76453	75942	76198
Treatment			df	SED	F pr.					
Folicur			93	1255.2	<0.001					
Variety			93	1255.2	<0.001					
N manager	ment		93	1255.2	0.671					
Nrate			93	1775.1	<0.001					
Fol x Var			93	1775.1	0.154					
Fol x Man			93	1775.1	0.818					
Var x Man			93	1775.1	0.760					
Fol x Nrate	}		93	2510.4	0.979					
Var x Nrate)		93	2510.4	0.549					
Man x Nrat	e		93	2510.4	0.910					
Fol x Var x Man			93	2510.4	0.960					
Fol x Var x Nrate			93	3550.2	0.835					
Fol x Man x Nrate			93	3550.2	0.807					
	Var x Man x Nrate			3550.2	0.561					
Fol x Var x	Man x N	rate	93	5020.8	0.832					

3.3.2. Experiment Year 2 – 2009/10

Soil and crop N in February

Experiments were drilled near ADAS Terrington (Norfolk) on 25/08/09, at Thornholme (E. Yorkshire), about 20 miles from High Mowthorpe, on 11/09/09 and ADAS Rosemaund (Herefordshire) on 31/08/09. The soil mineral N and GAI of the experimental crops was measured in late January or early February. A summary of this information (Table 54) shows that the combined supply of N from the crop and soil in February was 31 kg N/ha at Terrington, 68 kg N/ha at Rosemaund and 87 kg N/ha at Thornholme.

Table 54. Fertiliser requirement for canopy managed treatments

	Terrington	Thornholme	Rosemaund
SMN (kg/ha)	18	38	14
AAN (kg/ha)	31	59	25
GAI	0.24	0.9	1.12
Crop N (kg/ha)	13	49	54
SNS (kg/ha)	31	87	68
Fert N for GAI 3.5	240	147	178

SMN - soil mineral nitrogen

AAN – Additionally available N through mineralisation after February

SNS - soil nitrogen supply - sum of SMN and crop N

GAI - green area index

N treatments

The amount of fertiliser N required to achieve the optimum GAI of 3.5 by flowering was calculated at 240 kg/ha at Terrington, 178 kg/ha at Rosemaund and 147 kg/ha at Thornholme based on the measurements of soil and crop N. At all the sites it was estimated that the crop would not be able to take up all of the N required to acheve the optimum sized canopy by mid-flowering if the N applications were delayed until the 2nd conventional split timing (GS3,3 to 3,5). Therefore, 60 kg N/ha was applied at the 1st conventional split timing at Terrington and 40 kg N/ha was applied at the 1st conventional split timing at Rosemaund and Thornholme. After sufficient N had been applied to achieve the optimum GAI of 3.5 the remainder of the N was applied between yellow bud and early/mid flowering in late April/early May. The N applications in each split are described in Tables 55 to 57. The dates of the N applications and Folicur treatment are described in Table 58.

Table 55. Terrington N applications (kg/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	35	35	0	70
3	Conventional	70	70	0	140
4	Conventional	105	105	0	210
5	Conventional	140	140	0	280
6	Conventional	175	175	0	350
7	Managed	60	10	0	70
8	Managed	60	80	0	140
9	Managed	60	150	0	210
10	Managed	60	180	40	280
11	Managed	60	180	110	350

Table 56. Thornholme N applications (kg/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Managed	40	20	0	60
8	Managed	40	80	0	120
9	Managed	40	110	30	180
10	Managed	40	110	90	240
11	Managed	40	110	150	300

Table 57. Rosemaund N applications (kg/ha)

N treatment	Management	1 st split	2 nd split	3 rd split	Total
1		0	0	0	0
2	Conventional	30	30	0	60
3	Conventional	60	60	0	120
4	Conventional	90	90	0	180
5	Conventional	120	120	0	240
6	Conventional	150	150	0	300
7	Managed	40	20	0	60
8	Managed	40	80	0	120
9	Managed	40	140	0	180
10	Managed	40	140	60	240
11	Managed	40	140	120	300

Table 58. Timings of Nitrogen and Folicur treatments

	Terrington	High Mowthorpe	Rosemaund
1 st N timing	10/03/10	10/03/10	25/02/10
2 nd N timing	09/04/10	13/04/10	23/03/10
3 rd N timing	21/04/10	06/05/10	10/04/10
Folicur timing	24/04/10	21/04/10	9/04/10
	(0.5 l/ha)	(0.5 l/ha)	(1.0 l/ha)

Seed yield

At Terrington, nitrogen rate and Folicur treatment significantly affected yield, with Folicur application increasing yield by an average of 0.22 t/ha (Table 59). Averaged over all treatments, yields significantly increased with each level of N from nil N (1.71 t/ha) to 210 kg N/ha (3.59 t/ha). There were no significant effects of variety or Canopy Management.

At Thornholme, nitrogen rate and Folicur treatment significantly affected yield, with Folicur application increasing the yield of Excalibur by 0.27 t/ha, compared to no response in PR45D03. Averaged over all treatments, yields significantly increased with each level of N from nil N (3.52 t/ha) to 300 kg N/ha (5.23 t/ha), except from the step from 180 to 240 kg N/ha, which was not significant. There were no significant effects of variety alone, or Canopy Management.

At Rosemaund, as at both other sites, nitrogen rate and Folicur treatment significantly affected yield, with Folicur application increasing yield by an average of 0.68 t/ha (Table 61). Averaged over all treatments, yields significantly increased with each level of N from nil N (3.54 t/ha) to 180 kg N/ha (5.28 t/ha). There were no significant effects of variety or Canopy Management.

Table 59. Terrington seed yields (t/ha @ 91% DM).

Variety	N rate	No Fo	licur		Folicur (0.5 l/ha)	1	Conv	СМ	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Excalibur	0	1.53		1.53	1.66		1.66	1.60		1.60
Excalibur	70	2.43	2.54	2.49	2.41	2.43	2.42	2.42	2.49	2.45
Excalibur	140	3.08	3.20	3.14	3.50	3.42	3.46	3.29	3.31	3.30
Excalibur	210	3.36	3.36	3.36	3.63	3.68	3.66	3.50	3.52	3.51
Excalibur	280	3.48	3.41	3.45	4.02	3.98	4.00	3.75	3.70	3.72
Excalibur	350	3.67	3.54	3.60	3.88	3.78	3.83	3.78	3.66	3.72
Excalibur	Mean	2.92	2.93	2.93	3.18	3.16	3.17	3.05	3.05	3.05
PR45D03	0	1.80		1.80	1.85		1.85	1.83		1.83
PR45D03	70	2.46	2.74	2.60	2.69	2.73	2.71	2.58	2.74	2.66
PR45D03	140	3.26	3.38	3.32	3.32	3.46	3.39	3.29	3.42	3.35
PR45D03	210	3.35	3.49	3.42	3.81	4.01	3.91	3.58	3.75	3.67
PR45D03	280	3.25	3.47	3.36	3.60	4.01	3.81	3.42	3.74	3.58
PR45D03	350	3.64	3.68	3.66	3.76	3.62	3.69	3.70	3.65	3.68
PR45D03	Mean	2.96	3.09	3.03	3.17	3.28	3.23	3.07	3.19	3.13
Exc+D03	0	1.67		1.67	1.76		1.76	1.71		1.71
Exc+D03	70	2.44	2.64	2.54	2.55	2.58	2.57	2.50	2.61	2.55
Exc+D03	140	3.17	3.29	3.23	3.41	3.44	3.43	3.29	3.36	3.33
Exc+D03	210	3.36	3.42	3.39	3.72	3.85	3.78	3.54	3.64	3.59
Exc+D03	280	3.36	3.44	3.40	3.81	4.00	3.90	3.58	3.72	3.65
Exc+D03	350	3.65	3.61	3.63	3.82	3.70	3.76	3.74	3.65	3.70
Exc+D03	Mean	2.94	3.01	2.98	3.18	3.22	3.20	3.06	3.12	3.09
Treatment			df	SED	F pr.					
Folicur			141	0.0565	<0.001					
Variety			141	0.0565	0.175					
N manage	ment		141	0.0565	0.321					
N rate			141	0.0978	< 0.001					
Fol x Var			141	0.0799	0.703					
Fol x Man			141	0.0799	0.805					
Var x Man			141	0.0799	0.252					
Fol x Nrate	<u> </u>		141	0.1383	0.116					
Var x Nrate			141	0.1383	0.353					
Man x Nra	te		141	0.1383	0.876					
Fol x Var x			141	0.1129	0.977					
Fol x Var x			141	0.1123	0.796					
Fol x Man			141	0.1956	0.730					
	Var x Man x Nrate		141	0.1956	0.958					
	Fol x Var x Man x Nrate									
I UI X VAI X	iviai i X l'	viale	141	0.2767	0.993					

Table 60. Thornholme seed yields (t/ha @ 91% DM).

Variety	N rate	No Fo	licur		Folicur (0.5 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Excalibur	0	3.19		3.19	3.72		3.72	3.46		3.46
Excalibur	60	4.39	4.23	4.31	4.20	4.23	4.22	4.30	4.23	4.26
Excalibur	120	4.53	4.45	4.49	4.79	4.84	4.81	4.66	4.64	4.65
Excalibur	180	5.03	4.76	4.89	5.08	5.10	5.09	5.05	4.93	4.99
Excalibur	240	5.02	4.75	4.88	5.44	5.28	5.36	5.23	5.01	5.12
Excalibur	300	5.19	5.16	5.17	5.44	5.30	5.37	5.32	5.23	5.27
Excalibur	Mean	4.56	4.42	4.49	4.78	4.75	4.76	4.67	4.59	4.63
PR45D03	0	3.49		3.49	3.67		3.67	3.58		3.58
PR45D03	60	4.28	4.34	4.31	4.21	4.23	4.22	4.24	4.29	4.26
PR45D03	120	4.85	4.69	4.77	4.34	4.70	4.52	4.60	4.70	4.65
PR45D03	180	4.94	5.25	5.10	5.04	4.95	5.00	4.99	5.10	5.05
PR45D03	240	4.69	4.93	4.81	4.96	5.15	5.06	4.83	5.04	4.93
PR45D03	300	5.20	5.17	5.19	5.09	5.25	5.17	5.15	5.21	5.18
PR45D03	Mean	4.58	4.65	4.61	4.55	4.66	4.61	4.56	4.65	4.61
Exc+D03	0	3.34		3.34	3.70		3.70	3.52		3.52
Exc+D03	60	4.34	4.29	4.31	4.20	4.23	4.22	4.27	4.26	4.26
Exc+D03	120	4.69	4.57	4.63	4.57	4.77	4.67	4.63	4.67	4.65
Exc+D03	180	4.98	5.00	4.99	5.06	5.03	5.04	5.02	5.02	5.02
Exc+D03	240	4.85	4.84	4.85	5.20	5.21	5.21	5.03	5.03	5.03
Exc+D03	300	5.19	5.16	5.18	5.27	5.28	5.27	5.23	5.22	5.23
Exc+D03	Mean	4.57	4.53	4.55	4.67	4.70	4.68	4.62	4.62	4.62
Treatment			df	SED	F pr.					
Folicur			141	0.0549	0.016					
Variety			141	0.0549	0.742					
N managei	ment		141	0.0549	0.955					
N rate			141	0.0951	< 0.001					
Fol x Var			141	0.0777	0.013					
Fol x Man			141	0.0777	0.525					
Var x Man			141	0.0777	0.121					
Fol x Nrate	;		141	0.1345	0.100					
Var x Nrate			141	0.1345	0.652					
Man x Nrat			141	0.1345	1.000					
Fol x Var x	-		141	0.1098	0.758					
Fol x Var x			141	0.1902	0.786					
Fol x Man x Nrate		141	0.1902	0.941						
	Var x Man x Nrate		141	0.1902	0.917					
Fol x Var x		Irate	141	0.1902	0.743					
ı OI A VAI A	IVICIT A I	11010	171	0.203	0.770					

Table 61. Rosemaund seed yields (t/ha @ 91% DM).

Variety	N	No Fo	licur		Folicur 1	.0 l/ha)		Conv	СМ	Grand
	rate kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
	•	0.40		0.40			0.00	0.74		0.74
Excalibur	0	3.46	4.50	3.46	3.89	F 00	3.89	3.71	4.00	3.71
Excalibur	60	4.57	4.58	4.58	5.05	5.06	5.06	4.89	4.82	4.85
Excalibur	120	4.62	4.63	4.63	5.27	5.27	5.27	4.95	4.95 5.56	4.95
Excalibur Excalibur	180 240	4.08 4.78	5.26 4.74	4.76 4.76	5.20 5.87	5.85 5.73	5.52 5.80	4.72 5.40	5.56 5.23	5.17 5.31
Excalibur	300	5.04	5.06	5.05	5.78	5.73	5.73	5.40	5.23	5.39
Excalibur	Mean	4.46	4.67	4.58	5.78	5.25	5.73	4.86	4.97	4.92
Excalibul	Mean	4.40	4.07	4.56	5.16	5.25	5.21	4.00	4.97	4.92
PR45D03	0	3.29		3.29	3.51		3.51	3.40		3.40
PR45D03	60	4.19	4.20	4.20	4.41	4.91	4.66	4.30	4.56	4.43
PR45D03	120	4.67	4.32	4.50	5.47	5.16	5.32	5.07	4.74	4.91
PR45D03	180	5.02	4.93	4.98	5.83	5.78	5.81	5.43	5.35	5.39
PR45D03	240	4.99	4.95	4.97	5.77	5.80	5.78	5.38	5.44	5.40
PR45D03	300	4.97	4.79	4.88	5.96	5.72	5.84	5.47	5.25	5.36
PR45D03	Mean	4.52	4.39	4.46	5.16	5.15	5.15	4.84	4.78	4.81
Exc+D03	0	3.36		3.36	3.70		3.70	3.54		3.54
Exc+D03	60	4.32	4.39	4.36	4.73	4.99	4.86	4.55	4.69	4.63
Exc+D03	120	4.65	4.48	4.56	5.37	5.21	5.29	5.01	4.85	4.03
Exc+D03	180	4.62	5.10	4.87	5.52	5.81	5.66	5.10	5.46	5.28
Exc+D03	240	4.90	4.83	4.86	5.82	5.76	5.79	5.39	5.33	5.36
Exc+D03	300	5.01	4.93	4.97	5.87	5.70	5.78	5.44	5.31	5.38
Exc+D03	Mean	4.50	4.53	4.51	5.17	5.20	5.18	4.85	4.87	4.86
Treatment			df	SED	F pr.					
Folicur			134	0.0708	<0.001					
Variety			134	0.0708	0.328					
N manager	ment		134	0.0708	0.649					
N rate			134	0.1226	<0.001					
Fol x Var			134	0.1001	0.895					
Fol x Man			134	0.1001	0.962					
Var x Man			134	0.1001	0.302					
Fol x Nrate			134	0.1734	0.068					
Var x Nrate				0.1734	0.000					
			134							
Man x Nrat			134	0.1734	0.218					
Fol x Var x			134	0.1415	0.430					
Fol x Var x			134	0.2452	0.920					
Fol x Man			134	0.2452	0.963					
Var x Man			134	0.2452	0.201					
Fol x Var x	Man x N	Irate	134	0.3467	0.993					

Optimum N rates

At Terrington, regression analyses showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (79.2%, P=0.004). The economically optimum N rate was 228 kg N/ha for all treatments (Table 62).

At Thornholme, regression analyses showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (71.9%, P=0.025). The economically optimum N rate was 215 kg N/ha for all treatments (Table 62).

At Rosemaund, regression analyses showed that fitting parallel curves for each treatment combination accounted for the most variation between N rate and yield (64.0%, P<0.001). The economically optimum N rate was 176 kg N/ha for all treatments (Table 62).

Table 62. Optimum N rate and yields at N opt.

	Terrington	Thornholme	Rosemaund
Economically optimum N rate (kg/ha)	228	215	176
Excalibur Conventional N timings	3.47	4.98	4.78
Excalibur Managed N timings	3.47	4.85	4.98
Excalibur Conventional N timings with Folicur	3.73	5.20	5.54
Excalibur Managed N timings with Folicur	3.70	5.17	5.61
PR45D03 Conventional N timings	3.50	5.00	4.89
PR45D03 Managed N timings	3.64	5.07	4.78
PR45D03 Conventional N timings with Folicur	3.72	4.98	5.52
PR45D03 Managed N timings with Folicur	3.83	5.08	5.51

Crop growth before stem extension

Crop assessments carried out in February before any N applications showed that the GAI, dry matter, N concentration and N content of the two varieties did not differ at any of the three sites (Table 63). Across both varieties, each unit of GAI contained 53.9 kg N/ha at Terrington, 54.0 kg N/ha at Thornholme and 48.6 kg N/ha at Rosemaund. These results support previous studies which have shown that oilseed rape crops contain about 50 kg N/ha per unit of GAI. At Rosemaund only there was a significant difference between the two varieties in crop kg N/ha per unit of GAI, with PR45D03 containing more N per unit GAI (Table 63).

Table 63. February measurements.

Terrington

	GAI	Dry matter	N content (% of	Crop N
	GAI	(t/ha)	dry matter)	(kg/ha)
Excalibur	0.260	0.46	2.96	13.6
PR45D03	0.223	0.43	2.86	12.5
Mean	0.242	0.45	2.91	13.0
SED (3 df)	0.0402	0.0698	0.1995	2.60
F pr.	0.426	0.726	0.645	0.691

Thornholme

		Dry matter	N content (% of	Crop N
	GAI	•	,	•
		(t/ha)	dry matter)	(kg/ha)
Excalibur	0.910	1.15	4.40	50.5
PR45D03	0.897	1.17	4.04	47.0
Mean	0.904	1.16	4.22	48.8
SED (3 df)	0.1404	0.2030	0.1142	7.79
F pr.	0.932	0.922	0.052	0.684

Rosemaund

	GAI	Dry matter	N content (% of	Crop N
	GAI	(t/ha)	dry matter)	(kg/ha)
Excalibur	1.229	1.65	3.11	51.5
PR45D03	1.010	1.70	3.34	57.3
Mean	1.119	1.68	3.23	54.4
SED (3 df)	0.0958	0.0746	0.1189	3.47
F pr.	0.107	0.532	0.142	0.193

GAI, dry weight and N content at mid-flowering

Increased N rates significantly increased the GAI of leaves and stems and the biomass and N content of all parts of the crop at all sites except Rosemaund, where flower and stem biomass were not significantly increased by the higher N rate (Table 64 to 72).

At Terrington, there were no significant effects of N management on GAI, biomass or crop N status at mid-flowering. The only significant effects of variety were on stem biomass, which was higher for Excalibur than for PR45D03 (Table 65), and the N concentration of stems and flowers, which was higher for PR45D03 (Table 70).

These differences balanced each other such that there was no difference between the varieties in whole crop N content.

The soil mineral N + crop N in February amounted to 31 kg N/ha at Terrington. In theory this would have been expected to be taken up into the crop by mid-flowering and to produce a GAI of 0.62 in control plots. The measurements at Nil N showed that the crop had taken up 59 kg N/ha (Table 70) and achieved a GAI of 0.90 (Table 64). Applying 280 kg N/ha would be expected to increase N uptake by 168 kg N/ha and increase the GAI by 3.4 units. The measured increases were 86 kg N/ha and 1.42 GAI units. It is likely that the dry weather in spring reduced N uptake efficiency at this site.

At Thornholme, Conventional N timings gave a significantly higher leaf and total GAI at mid-flowering than Canopy Managed timings (Table 66), although even at the higher N rate of 240 kg N/ha, both management strategies gave a total GAI below the target of 3.5 units. Canopy Management did not significantly affect stem GAI or the biomass of any crop fraction (Table 67). Variety did not significantly affect total GAI or total biomass, but the biomass fractions, with PR45D03 having a lower stem biomass and higher flower and pod biomass than Excalibur. Excalibur also showed a slightly greater increase in stem biomass in response to higher N (P < 0.1). PR45D03 had a significantly higher N concentration than Excalibur in all plant parts but, due to its lower biomass than Excalibur, there was no difference in total crop N content between the varieties (Table 71).

The soil mineral N + crop N in February amounted to 87 kg N/ha at Thornholme. In theory this would have been expected to be taken up into the crop by mid-flowering and to produce a GAI of 1.74 in control plots. The measurements at Nil N showed that the crop had taken up 81 kg N/ha (Table 71) but only achieved a GAI of 1.05 (Table 66). Applying 240 kg N/ha would be expected to increase N uptake by 144 kg N/ha and increase the GAI by 2.9 units. The measured increases were 110 kg N/ha and 1.4 GAI units. Dry spring weather may have reduced N uptake efficiency at this site.

At Rosemaund Conventional N timings gave a higher stem biomass than Canopy Managed timings (Table 69), but did not have any other significant effects on GAI, biomass or plant N status. PR45D03 had a significantly higher leaf biomass but lower leaf GAI than Excalibur, and a lower stem and total biomass. PR45D03 also had a

higher N concentration in the stems and flowers, as at both other sites (Table 72). There was no difference in total N uptake between the two varieties.

The soil mineral N + crop N in February amounted to 68 kg N/ha at Rosemaund. In theory this would have been expected to be taken up into the crop by mid-flowering and to produce a GAI of 1.36 in control plots. The measurements at Nil N showed that the crop had taken up 156 kg N/ha (Table 72) and achieved a GAI of 2.31 (Table 68). The N uptake in the Nil N plots was therefore much larger than expected which is difficult to explain given the dry conditions. Applying 240 kg N/ha would be expected to increase N uptake by 144 kg N/ha and increase the GAI by 2.9 units. The measured increases were 105 kg N/ha and 2.76 GAI units.

Across all the sites it was interesting to observe that the overall amount of N taken up by flowering and GAI did not differ between Excalibur and PR45D03. The overall biomass was only less for the semi-dwarf at one site only (Rosemaund). The semi-dwarf did have a consistently greater stem N% and consistently lower stem biomass and stem GAI.

Across all sites, a comparison of crop N content and GAI supported the ratio derived from previous work, that approximately 50 kg N/ha is required to build each unit of GAI. With the means of each variety-N rate-management combination from each site plotted together (Fig. 5.2), the regression equation gave an actual value of 58 kg N/ha for each unit GAI. There were no significant differences between the varieties or N management strategies in N content per unit GAI at any site (Tables 70 to 72), and although at Rosemaund the nil N treatment had significantly higher N content per unit GAI than the 240 N treatment, the same pattern did not occur at the other sites.

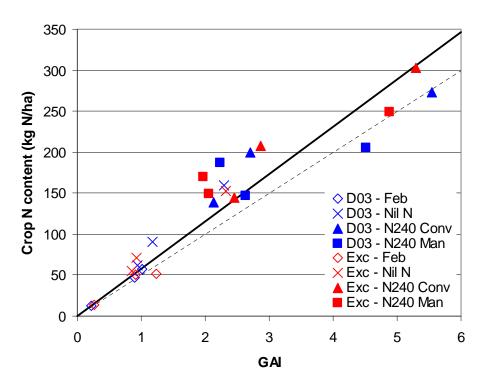


Figure 2. Comparison of GAI and crop N content, for all sites.

 Table 64. Terrington. Mid flowering green area indices.

Variety	N rate	GAI lea	aves		GAI st	ems		Total 0	GAI	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	0.61		0.61	0.24		0.24	0.85		0.85
Excalibur	280	1.98	1.62	1.80	0.48	0.44	0.46	2.46	2.06	2.26
Excalibur	Mean	1.29	1.11	1.20	0.36	0.34	0.35	1.66	1.45	1.55
DD 45D00	0	0.00		0.00	0.05		0.05	0.04		0.04
PR45D03	0	0.69		0.69	0.25		0.25	0.94		0.94
PR45D03	280	1.78	2.29	2.03	0.36	0.34	0.35	2.13	2.63	2.38
PR45D03	Mean	1.23	1.49	1.36	0.31	0.30	0.30	1.54	1.79	1.66
Exc+D03	0	0.65		0.65	0.25		0.25	0.90		0.90
	-		4.05			0.00			0.05	
Exc+D03	280	1.88	1.95	1.92	0.42	0.39	0.41	2.30	2.35	2.32
Exc+D03	Mean	1.26	1.30	1.28	0.33	0.32	0.33	1.60	1.62	1.61
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		20	0.1673	0.356	21	0.0272	0.085	20	0.1907	0.583
N managen	ment	20	0.1673	0.827	21	0.0272	0.591	20	0.1907	0.899
Nrate		20	0.1673	< 0.001	21	0.0272	< 0.001	20	0.1907	< 0.001
Var x Man		20	0.2366	0.207	21	0.0385	0.825	20	0.2697	0.249
Var x Nrate)	20	0.2366	0.670	21	0.0385	0.038	20	0.2697	0.959
Man x Nrat	е	20	0.2366	0.827	21	0.0385	0.591	20	0.2697	0.899
Var x Man	x Nrate	20	0.3346	0.207	21	0.0544	0.825	20	0.3814	0.249

Table 65. Terrington. Mid flowering dry matter measurements.

	Ü		•	•									
Variety	N rate	Leaf b	iomass (t	/ha)	Stem I	oiomass	(t/ha)	Flowe	r biomass	(t/ha)	Total b	oiomass	(t/ha)
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	0.59		0.59	2.06		2.06	0.72		0.72	3.37		3.37
Excalibur	280	1.49	1.42	1.46	3.12	3.01	3.06	1.00	1.10	1.05	5.61	5.53	5.57
Excalibur	Mean	1.04	1.00	1.02	2.59	2.54	2.56	0.86	0.91	0.88	4.49	4.45	4.47
PR45D03	0	0.66		0.66	1.76		1.76	0.82		0.82	3.23		3.23
PR45D03	280	1.39	1.58	1.48	2.14	1.93	2.03	0.95	0.92	0.93	4.47	4.43	4.45
PR45D03	Mean	1.02	1.12	1.07	1.95	1.84	1.90	0.88	0.87	0.87	3.85	3.83	3.84
Exc+D03	0	0.62		0.62	1.91		1.91	0.77		0.77	3.30		3.30
Exc+D03	280	1.44	1.50	1.47	2.63	2.47	2.55	0.97	1.01	0.99	5.04	4.98	5.01
Exc+D03	Mean	1.03	1.06	1.05	2.27	2.19	2.23	0.87	0.89	0.88	4.17	4.14	4.16
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	0.1204	0.671	21	0.208	0.004	21	0.1002	0.925	21	0.413	0.145
N manager	ment	21	0.1204	0.806	21	0.208	0.705	21	0.1002	0.864	21	0.413	0.938
Nrate		21	0.1204	<0.001	21	0.208	0.006	21	0.1002	0.036	21	0.413	< 0.001
Var x Man		21	0.1703	0.594	21	0.294	0.909	21	0.1417	0.772	21	0.585	0.978
Var x Nrate)	21	0.1703	0.845	21	0.294	0.096	21	0.1417	0.302	21	0.585	0.248
Man x Nrat	е	21	0.1703	0.806	21	0.294	0.705	21	0.1417	0.864	21	0.585	0.938
Var x Man	x Nrate	21	0.2409	0.594	21	0.416	0.909	21	0.2003	0.772	21	0.827	0.978
					<u> </u>								

 Table 66. Thornholme. Mid flowering green area indices.

Variety	N rate	GAI le	aves		GAI st	ems		Total 0	GAI	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	0.51		0.51	0.42		0.42	0.93		0.93
Excalibur	240	2.07	1.35	1.71	0.79	0.62	0.71	2.87	1.97	2.42
Excalibur	Mean	1.29	0.93	1.11	0.61	0.52	0.56	1.90	1.45	1.68
PR45D03	0	0.73		0.73	0.45		0.45	1.18		1.18
PR45D03	240	2.10	1.61	1.86	0.61	0.62	0.61	2.71	2.23	2.47
PR45D03	Mean	1.41	1.17	1.29	0.53	0.53	0.53	1.94	1.70	1.82
Exc+D03	0	0.62		0.62	0.44		0.44	1.05		1.05
Exc+D03	240	2.09	1.48	1.78	0.70	0.62	0.66	2.79	2.10	2.44
Exc+D03	Mean	1.35	1.05	1.20	0.57	0.53	0.55	1.92	1.58	1.75
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	0.1078	0.107	21	0.0341	0.321	21	0.1357	0.291
N manager	ment	21	0.1078	0.011	21	0.0341	0.232	21	0.1357	0.019
Nrate		21	0.1078	< 0.001	21	0.0341	< 0.001	21	0.1357	< 0.001
Var x Man		21	0.1524	0.591	21	0.0482	0.197	21	0.1919	0.451
Var x Nrate)	21	0.1524	0.745	21	0.0482	0.088	21	0.1919	0.485
Man x Nrat	e	21	0.1524	0.011	21	0.0482	0.232	21	0.1919	0.019
Var x Man	x Nrate	21	0.2155	0.591	21	0.0682	0.197	21	0.2714	0.451

Table 67. Thornholme. Mid flowering dry matter measurements.

Variety	N rate	Leaf b	iomass (t	/ha)	Stem I	oiomass	(t/ha)	Flower	and pod bio	mass (t/ha)	Total b	oiomass	(t/ha)
	kg/ha	Conv	CM	Mean	Conv	СМ	Mean	Conv	CM	Mean	Conv	СМ	Mean
Excalibur	0	0.58		0.58	3.36		3.36	0.63		0.63	4.57		4.57
Excalibur	240	1.58	1.31	1.44	5.57	3.92	4.74	1.14	0.94	1.04	8.29	6.16	7.23
Excalibur	Mean	1.08	0.94	1.01	4.47	3.64	4.05	0.89	0.78	0.84	6.43	5.37	5.90
PR45D03	0	0.76		0.76	3.29		3.29	0.92		0.92	4.97		4.97
PR45D03	240	1.50	1.32	1.41	3.65	3.74	3.69	1.20	1.20	1.20	6.35	6.26	6.30
PR45D03	Mean	1.13	1.04	1.09	3.47	3.51	3.49	1.06	1.06	1.06	5.66	5.61	5.64
Exc+D03	0	0.67		0.67	3.33		3.33	0.77		0.77	4.77		4.77
Exc+D03	240	1.54	1.31	1.43	4.61	3.83	4.22	1.17	1.07	1.12	7.32	6.21	6.76
Exc+D03	Mean	1.11	0.99	1.05	3.97	3.58	3.77	0.97	0.92	0.95	6.05	5.49	5.77
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	0.0669	0.268	21	0.259	0.042	21	0.0536	<0.001	21	0.364	0.478
N manager	nent	21	0.0669	0.102	21	0.259	0.147	21	0.0536	0.349	21	0.364	0.141
Nrate		21	0.0669	<0.001	21	0.259	0.002	21	0.0536	< 0.001	21	0.364	<0.00
Var x Man		21	0.0946	0.746	21	0.367	0.108	21	0.0758	0.351	21	0.514	0.176
Var x Nrate)	21	0.0946	0.117	21	0.367	0.073	21	0.0758	0.263	21	0.514	0.083
Man x Nrat	е	21	0.0946	0.102	21	0.367	0.147	21	0.0758	0.349	21	0.514	0.141
Var x Man	x Nrate	21	0.1338	0.746	21	0.519	0.108	21	0.1071	0.351	21	0.727	0.176

 Table 68. Rosemaund. Mid flowering green area indices.

Variety	N rate	GAI lea	aves		GAI ste	ems		Total C	€AI	
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	1.57		1.57	0.76		0.76	2.33		2.33
Excalibur	240	4.10	3.97	4.04	1.19	0.90	1.05	5.29	4.88	5.08
Excalibur	Mean	2.83	2.77	2.80	0.98	0.83	0.90	3.81	3.60	3.71
PR45D03	0	1.69		1.69	0.60		0.60	2.29		2.29
PR45D03	240	4.81	3.87	4.34	0.80	0.65	0.72	5.60	4.52	5.06
PR45D03	Mean	3.25	2.78	3.01	0.70	0.63	0.66	3.95	3.41	3.68
Exc+D03	0	1.63		1.63	0.68		0.68	2.31		2.31
Exc+D03	240	4.45	3.92	4.19	0.99	0.78	0.89	5.45	4.70	5.07
Exc+D03	Mean	3.04	2.78	2.91	0.84	0.73	0.78	3.88	3.51	3.69
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		20	0.266	0.435	20	0.0469	<0.001	20	0.300	0.925
N managen	nent	20	0.266	0.332	20	0.0469	0.032	20	0.300	0.228
Nrate		20	0.266	< 0.001	20	0.0469	< 0.001	20	0.300	< 0.001
Var x Man		20	0.376	0.454	20	0.0664	0.449	20	0.424	0.584
Var x Nrate		20	0.376	0.730	20	0.0664	0.089	20	0.424	0.976
Man x Nrate	е	20	0.376	0.332	20	0.0664	0.032	20	0.424	0.228
Var x Man	x Nrate	20	0.532	0.454	20	0.0939	0.449	20	0.599	0.584

 Table 69. Rosemaund. Mid flowering dry matter measurements.

Variety	N rate	Leaf b	iomass (t	/ha)	Stem I	oiomass	(t/ha)	Flower	r biomas	s (t/ha)	Total b	oiomass	(t/ha)
,	kg/ha	Conv	CM `	Mean	Conv	CM	Mean	Conv	СМ	Mean	Conv	СМ	Mean
-													
Excalibur	0	1.03		1.03	5.11		5.11	0.77		0.77	6.91		6.91
Excalibur	240	1.54	1.67	1.61	6.89	5.19	6.04	0.81	0.78	0.79	9.24	7.64	8.44
Excalibur	Mean	1.29	1.35	1.32	6.00	5.15	5.57	0.79	0.77	0.78	8.07	7.27	7.67
PR45D03	0	1.31		1.31	3.89		3.89	0.82		0.82	6.03		6.03
PR45D03	240	2.20	1.75	1.98	4.43	3.93	4.18	0.74	0.75	0.74	7.37	6.43	6.90
PR45D03	Mean	1.76	1.53	1.64	4.16	3.91	4.04	0.78	0.78	0.78	6.70	6.23	6.46
Exc+D03	0	1.17		1.17	4.50		4.50	0.80		0.80	6.47		6.47
Exc+D03	240	1.87	1.71	1.79	5.66	4.56	5.11	0.73	0.76	0.77	8.31	7.03	7.67
Exc+D03	Mean	1.52	1.44	1.48	5.08	4.53	4.80	0.79	0.78	0.78	7.39	6.75	7.07
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		20	0.1288	0.020	20	0.385	< 0.001	20	0.070	0.969	20	0.528	0.033
N manager	nent	20	0.1288	0.532	20	0.385	0.169	20	0.070	0.938	20	0.528	0.242
Nrate		20	0.1288	< 0.001	20	0.385	0.127	20	0.070	0.678	20	0.528	0.034
Var x Man		20	0.1821	0.276	20	0.544	0.445	20	0.099	0.900	20	0.747	0.759
Var x Nrate	:	20	0.1821	0.743	20	0.544	0.412	20	0.099	0.472	20	0.747	0.538
Man x Nrat	е	20	0.1821	0.532	20	0.544	0.169	20	0.099	0.938	20	0.747	0.242
Var x Man	x Nrate	20	0.2575	0.276	20	0.770	0.445	20	0.139	0.900	20	1.056	0.759

Table 70. Terrington. Mid flowering measurement of nitrogen concentration in dry plant material on Treatments 1, 3 and 9 without Folicur.

Variety	N rate	Leaf N	%		Other p	lant materi	al N %	Total cr	op N (kg/l	na)	Crop N unit GA	l (kg N/h \l	a) per
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	2.37		2.37	1.49		1.49	55.5		55.5	66.8		66.8
Excalibur	280	3.75	3.83	3.79	2.15	2.38	2.26	144.1	149.2	146.6	59.2	72.5	65.8
Excalibur	Mean	3.06	3.10	3.08	1.82	1.94	1.88	99.8	102.4	101.1	63.0	69.6	66.3
PR45D03	0	2.23		2.23	1.84		1.84	61.5		61.5	66.3		66.3
PR45D03	280	3.96	4.37	4.16	2.73	2.74	2.74	139.0	146.9	143.0	66.8	57.1	61.9
PR45D03	Mean	3.09	3.30	3.20	2.29	2.29	2.29	100.3	104.2	102.3	66.5	61.7	64.1
Exc+D03	0	2.30		2.30	1.67		1.67	58.5		58.5	66.5		66.5
Exc+D03	280	3.86	4.10	3.98	2.44	2.56	2.50	141.6	148.1	144.8	63.0	64.8	63.9
Exc+D03	Mean	3.08	3.20	3.14	2.05	2.11	2.08	100.0	103.3	101.7	64.8	65.7	65.2
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	0.1058	0.295	21	0.0789	<0.001	21	9.44	0.903	20	2.89	0.458
N manager	nent	21	0.1058	0.266	21	0.0789	0.467	21	9.44	0.734	20	2.89	0.757
Nrate		21	0.1058	<.001	21	0.0789	< 0.001	21	9.44	< 0.001	20	2.89	0.365
Var x Man		21	0.1497	0.446	21	0.1116	0.474	21	13.35	0.944	20	4.08	0.061
Var x Nrate		21	0.1497	0.023	21	0.1116	0.446	21	13.35	0.614	20	4.08	0.562
Man x Nrat	е	21	0.1497	0.266	21	0.1116	0.467	21	13.35	0.734	20	4.08	0.757
Var x Man	x Nrate	21	0.2116	0.446	21	0.1578	0.474	21	18.88	0.944	20	5.77	0.061

Table 71. Thornholme. Mid flowering measurement of nitrogen concentration in dry plant material on Treatments 1, 3 and 9 without Folicur.

Variety	N rate	Leaf N	%		Other p	lant materi	al N %	Total cr	op N (kg/l	na)	Crop N unit GA	l (kg N/h	na) per
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Conv	СМ	Mean	Conv	CM	Mean
Excalibur	0	2.48		2.48	1.39		1.39	70.6		70.6	74.2		74.2
	-	4.18	1 1 1			0.00			100.7			00.7	
Excalibur	240		4.14	4.16	2.07	2.38	2.22	208.1	169.7	188.9	72.8	88.7	80.8
Excalibur	Mean	3.33	3.31	3.32	1.73	1.88	1.80	139.3	120.1	129.7	73.5	81.5	77.5
DD 45D00	0	2.62		0.60	1.00		1.00	04.0		04.0	77.7		77 7
PR45D03	0	2.63	4.50	2.63	1.66	0.00	1.66	91.2	407.0	91.2	77.7	0.4.4	77.7
PR45D03	240	4.54	4.50	4.52	2.67	2.60	2.64	199.7	187.6	193.6	74.2	84.4	79.3
PR45D03	Mean	3.58	3.56	3.57	2.17	2.13	2.15	145.4	139.4	142.4	76.0	81.0	78.5
Exc+D03	0	2.56		2.56	1.52		1.52	80.9		80.9	76.0		76.0
Exc+D03	240	4.36	4.32	4.34	2.37	2.49	2.43	203.9	178.6	191.3	73.5	86.6	80.0
Exc+D03	Mean	3.46	3.44	3.45	1.95	2.01	1.98	142.4	129.8	136.1	74.7	81.3	78.0
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	0.0888	0.010	21	0.0903	0.001	21	10.99	0.261	21	3.25	0.760
N managen	nent	21	0.0888	0.826	21	0.0903	0.517	21	10.99	0.263	21	3.25	0.057
Nrate		21	0.0888	< 0.001	21	0.0903	< 0.001	21	10.99	< 0.001	21	3.25	0.224
Var x Man		21	0.1256	0.999	21	0.1277	0.305	21	15.54	0.555	21	4.59	0.658
Var x Nrate		21	0.1256	0.246	21	0.1277	0.432	21	15.54	0.476	21	4.59	0.454
Man x Nrate	Э	21	0.1256	0.826	21	0.1277	0.517	21	15.54	0.263	21	4.59	0.057
Var x Man	Nrate	21	0.1776	0.999	21	0.1807	0.305	21	21.97	0.555	21	6.49	0.658

Table 72. Rosemaund. Mid flowering measurement of nitrogen concentration in dry plant material on Treatments 1, 3 and 9 without Folicur.

Variety	N rate	Leaf N	%		Other p	lant mate	rial N %	Total c	rop N (kg/	ha)	Crop N GAI	l (kg N/r	na) per unit
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Conv	СМ	Mean	Conv	СМ	Mean
Excalibur	0	2.57		2.57	2.16		2.16	153		153	65.7		65.7
Excalibur	240	4.25	4.41	4.33	3.07	2.85	2.96	303	248	276	56.6	50.2	53.4
Excalibur	Mean	3.41	3.49	3.45	2.62	2.51	2.56	228	201	214	61.2	58.0	59.6
PR45D03	0	2.41		2.41	2.77		2.77	160		160	71.3		71.3
PR45D03	240	4.62	4.19	4.40	3.59	2.90	3.25	285	205	245	54.0	45.5	49.7
PR45D03	Mean	3.52	3.30	3.41	3.18	2.84	3.01	223	183	203	62.6	58.4	60.5
Exc+D03	0	2.49		2.49	2.47		2.47	156		156	68.5		68.5
Exc+D03	240	4.44	4.30	4.37	3.33	2.88	3.10	294	227	261	55.3	47.9	51.6
Exc+D03	Mean	3.46	3.40	3.43	2.90	2.67	2.78	225	192	208	61.9	58.2	60.0
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		20	0.1634	0.788	20	0.215	0.050	20	18.06	0.528	20	3.43	0.786
N managen	nent	20	0.1634	0.683	20	0.215	0.306	20	18.06	0.076	20	3.43	0.291
Nrate		20	0.1634	< 0.001	20	0.215	0.008	20	18.06	< 0.001	20	3.43	< 0.001
Var x Man		20	0.2311	0.364	20	0.304	0.591	20	25.55	0.728	20	4.86	0.881
Var x Nrate	!	20	0.2311	0.474	20	0.304	0.471	20	25.55	0.304	20	4.86	0.188
Man x Nrate	е	20	0.2311	0.683	20	0.304	0.306	20	25.55	0.076	20	4.86	0.291
Var x Man	x Nrate	20	0.3269	0.364	20	0.430	0.591	20	36.13	0.728	20	6.87	0.881

Light interception at mid-flowering

At Terrington, light reflection by the flowers was significantly reduced by Folicur treatment and was higher in PR45D03 than Excalibur (Table 73). At ground level, light interception was again slightly reduced by Folicur treatment and higher for PR45D03 than for Excalibur (P<0.1) (Table 74). Light interception was generally low across all treatments, as the crop was relatively small and thin due to the dry spring.

At Thornholme, light reflection by the flowers was significantly reduced by Folicur treatment and by Canopy Management, and was higher in PR45D03 than Excalibur (Table 75). The differences caused by Folicur and Canopy Management were replicated in measurements of light interception by flowers, but for varieties the difference was reversed, with Excalibur intercepting a greater proportion of light (Table 76). The higher N rate significantly increased light interception at the base of the canopy and was the only factor to significantly increase interception at ground level, probably because interception was over 95% in almost all treatments (Table 77).

At Rosemaund, as at both other sites, light reflection by the flowers was significantly reduced by Folicur treatment and was higher in PR45D03 than Excalibur (Table 78). Surprisingly, there was a slight but significant reduction in reflection in the higher N treatment. The light reflection differences caused by Folicur and variety were replicated in measurements of light interception by the flower and pod layer with Folicur reducing the amount of light intercepted by the flower layer. But the effect of N rate was reversed, with the higher N rate giving increased light interception (Table 79). At ground level more than 95% of light was intercepted by all treatments, but there were still significant differences between Folicur treatments and N rates, as at the base of the canopy (Table 80).

 Table 73. Terrington. Percentage of light reflected from flowers.

Variety	N rate	No Foli	icur		Folicur	(0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	140	9.1	9.3	9.2	9.0	8.7	8.9	9.0	9.0	9.0
Excalibur	280	9.7	9.1	9.4	9.0	8.4	8.7	9.4	8.8	9.1
Excalibur	Mean	9.4	9.2	9.3	9.0	8.6	8.8	9.2	8.9	9.0
PR45D03	140	10.6	10.4	10.5	9.7	9.6	9.7	10.2	10.0	10.1
PR45D03	280	10.0	10.8	10.4	8.7	10.4	9.5	9.3	10.6	10.0
PR45D03	Mean	10.3	10.6	10.5	9.2	10.0	9.6	9.8	10.3	10.0
Eval D02	1.40	0.0	0.0	0.0	0.4	0.0	0.2	0.6	0.5	0.6
Exc+D03	140	9.9	9.9	9.9	9.4	9.2	9.3	9.6	9.5	9.6
Exc+D03	280 Maan	9.9	10.0	9.9	8.9	9.4	9.1	9.4	9.7	9.5
Exc+D03	Mean	9.9	9.9	9.9	9.1	9.3	9.2	9.5	9.6	9.5
Treatment			df	SED	F pr.					
			~ .	0_0	. p					
Folicur			45	0.311	0.031					
Variety			45	0.311	0.003					
N managem	nent		45	0.311	0.724					
Nrate			45	0.311	0.918					
Fol x Var			45	0.440	0.546					
Fol x Man			45	0.440	0.839					
Var x Man			45	0.440	0.160					
Fol x Nrate			45	0.440	0.754					
Var x Nrate			45	0.440	0.794					
Man x Nrate)		45	0.440	0.490					
Fol x Var x I	Man		45	0.623	0.583					
Fol x Var x I	Nrate		45	0.623	0.790					
Fol x Man x	Nrate		45	0.623	0.588					
Var x Man x	Nrate		45	0.623	0.112					
Fol x Var x I	Man x Nra	te	45	0.881	0.873					

Table 74. Terrington. Percentage of light intercepted at ground level by the whole canopy

Variety	N rate	No Fol	icur		Folicur	(0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Excalibur	140	43.9	47.1	45.5	34.4	33.6	34.0	39.1	40.3	39.7
Excalibur	280	48.3	36.5	42.4	43.2	46.0	44.6	45.8	41.3	43.5
Excalibur	Mean	46.1	41.8	43.9	38.8	39.8	39.3	42.4	40.8	41.6
PR45D03	140	45.3	44.9	45.1	42.4	43.3	42.8	43.8	44.1	44.0
PR45D03	280	46.8	50.4	48.6	37.2	51.9	44.6	42.0	51.2	46.6
PR45D03	Mean	46.0	47.7	46.8	39.8	47.6	43.7	42.9	47.6	45.3
Exc+D03	140	44.6	46.0	45.3	38.4	38.4	38.4	41.5	42.2	41.8
Exc+D03	280	47.5	43.5	45.5	40.2	49.0	44.6	43.9	46.2	45.1
Exc+D03	Mean	46.1	44.7	45.4	39.3	43.7	41.5	42.7	44.2	43.5
Treatment			df	SED	F pr.					
Folicur			45	2.03	0.062					
Variety			45	2.03	0.078					
N managen	nent		45	2.03	0.456					
Nrate			45	2.03	0.120					
Fol x Var			45	2.87	0.712					
Fol x Man			45	2.87	0.168					
Var x Man			45	2.87	0.124					
Fol x Nrate			45	2.87	0.147					
Var x Nrate			45	2.87	0.777					
Man x Nrate			45	2.87	0.692					
Fol x Var x	Man		45	4.06	0.911					
Fol x Var x	Nrate		45	4.06	0.063					
Fol x Man x	Nrate		45	4.06	0.086					
Var x Man x	Nrate		45	4.06	0.079					
Fol x Var x	Man x Nra	te	45	5.74	0.598					

Table 75. Thornholme. Percentage of light reflected from the flowers.

Variety	N rate	No Foli	icur		Folicur (0).5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	15.0	13.3	14.2	13.9	14.1	14.0	14.5	13.7	14.1
Excalibur	240	14.4	13.2	13.8	14.3	12.5	13.4	14.4	12.8	13.6
Excalibur	Mean	14.7	13.3	14.0	14.1	13.3	13.7	14.4	13.3	13.8
PR45D03	120	17.2	17.5	17.3	16.0	17.1	16.6	16.6	17.3	17.0
PR45D03	240	16.9	17.0	17.0	16.6	15.2	15.9	16.7	16.1	16.4
PR45D03	Mean	17.1	17.3	17.2	16.3	16.1	16.2	16.7	16.7	16.7
Exc+D03	120	16.1	15.4	15.8	15.0	15.6	15.3	15.5	15.5	15.5
Exc+D03	240	15.7	15.1	15.4	15.4	13.8	14.6	15.6	14.5	15.0
Exc+D03	Mean	15.9	15.3	15.6	15.2	14.7	15.0	15.5	15.0	15.3
T((.16	OED	F					
Treatment			df	SED	F pr.					
Folicur			45	0.265	0.024					
Variety			45	0.265	<0.001					
N managem	nent		45	0.265	0.038					
Nrate			45	0.265	0.055					
Fol x Var			45	0.374	0.234					
Fol x Man			45	0.374	0.793					
Var x Man			45	0.374	0.030					
Fol x Nrate			45	0.374	0.615					
Var x Nrate			45	0.374	0.947					
Man x Nrate)		45	0.374	0.050					
Fol x Var x I	Man		45	0.529	0.377					
Fol x Var x I	Nrate		45	0.529	0.938					
Fol x Man x	Nrate		45	0.529	0.025					
Var x Man x	Nrate		45	0.529	0.606					
Fol x Var x I	Man x Nra	te	45	0.749	0.983					

Table 76. Thornholme. Percentage of light intercepted by the flowers and pods.

Variety	N rate	No Foli	icur		Folicur	(0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	67.7	59.5	63.6	64.3	66.0	65.2	66.0	62.7	64.4
Excalibur	240	71.4	68.2	69.8	71.8	63.6	67.7	71.6	65.9	68.8
Excalibur	Mean	69.6	63.8	66.7	68.1	64.8	66.4	68.8	64.3	66.6
PR45D03	120	64.7	64.1	64.4	58.6	57.8	58.2	61.7	60.9	61.3
PR45D03	240	68.1	63.1	65.6	65.2	62.1	63.6	66.6	62.6	64.6
PR45D03	Mean	66.4	63.6	65.0	61.9	59.9	60.9	64.1	61.8	63.0
Exc+D03	120	66.2	61.8	64.0	61.5	61.9	61.7	63.8	61.8	62.8
Exc+D03	240	69.8	65.6	67.7	68.5	62.8	65.7	69.1	64.2	66.7
Exc+D03	Mean	68.0	63.7	65.9	65.0	62.4	63.7	66.5	63.0	64.8
LXCTDOO	Moan	00.0	00.7	00.0	00.0	0 2 .¬	00.7	00.0	00.0	04.0
Treatment			df	SED	F pr.					
					·					
Folicur			45	1.227	0.081					
Variety			45	1.227	0.005					
N managem	nent		45	1.227	0.008					
Nrate			45	1.227	0.003					
Fol x Var			45	1.735	0.125					
Fol x Man			45	1.735	0.504					
Var x Man			45	1.735	0.398					
Fol x Nrate			45	1.735	0.903					
Var x Nrate			45	1.735	0.666					
Man x Nrate)		45	1.735	0.248					
Fol x Var x I	Man		45	2.453	0.739					
Fol x Var x I	Nrate		45	2.453	0.115					
Fol x Man x	Nrate		45	2.453	0.202					
Var x Man x	Nrate		45	2.453	0.844					
Fol x Var x I	Man x Nra	te	45	3.469	0.088					

Table 77. Thornholme. Percentage of light intercepted at ground level by the whole canopy.

Variety	N rate	No Fol	icur		Folicur	(0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	97.1	96.3	96.7	97.2	98.0	97.6	97.2	97.2	97.2
Excalibur	240	98.8	97.1	97.9	99.0	97.7	98.4	98.9	97.4	98.2
Excalibur	Mean	98.0	96.7	97.3	98.1	97.9	98.0	98.0	97.3	97.7
PR45D03	120	96.3	97.1	96.7	94.5	96.5	95.5	95.4	96.8	96.1
PR45D03	240	99.1	97.4	98.3	98.8	98.5	98.6	99.0	98.0	98.5
PR45D03	Mean	97.7	97.2	97.5	96.6	97.5	97.1	97.2	97.4	97.3
Eval D02	100	06.7	06.7	06.7	05.0	07.2	06.6	06.3	07.0	06.6
Exc+D03	120	96.7	96.7	96.7	95.9	97.3	96.6	96.3	97.0	96.6
Exc+D03	240 Maan	99.0	97.2	98.1	98.9	98.1	98.5	98.9	97.7	98.3
Exc+D03	Mean	97.8	97.0	97.4	97.4	97.7	97.5	97.6	97.3	97.5
Treatment			df	SED	F pr.					
			~ .	5 _5						
Folicur			45	0.519	0.788					
Variety			45	0.519	0.452					
N managem	nent		45	0.519	0.575					
Nrate			45	0.519	0.002					
Fol x Var			45	0.733	0.310					
Fol x Man			45	0.733	0.259					
Var x Man			45	0.733	0.361					
Fol x Nrate			45	0.733	0.618					
Var x Nrate			45	0.733	0.188					
Man x Nrate)		45	0.733	0.070					
Fol x Var x I	Man		45	1.037	0.877					
Fol x Var x I	Nrate		45	1.037	0.325					
Fol x Man x	Nrate		45	1.037	0.809					
Var x Man x	Nrate		45	1.037	0.661					
Fol x Var x I	Man x Nra	te	45	1.467	0.710					

Table 78. Rosemaund. Percentage of light reflected from the flowers.

		No Foli	Cui		Folicur (0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	СМ	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	12.4	12.0	12.2	11.7	11.1	11.4	12.1	11.6	11.8
Excalibur	240	11.7	12.7	12.2	11.2	11.7	11.5	11.5	12.2	11.8
Excalibur	Mean	12.1	12.4	12.2	11.5	11.4	11.4	11.8	11.9	11.8
PR45D03	120	14.1	14.2	14.1	13.8	13.4	13.6	13.9	13.8	13.9
PR45D03	240	13.2	12.8	13.0	12.9	12.8	12.8	13.0	12.8	12.9
PR45D03	Mean	13.6	13.5	13.6	13.3	13.1	13.2	13.5	13.3	13.4
Exc+D03	120	13.3	13.1	13.2	12.7	12.2	12.5	13.0	12.7	12.8
Exc+D03	240	12.4	12.7	12.6	12.1	12.3	12.2	12.2	12.5	12.4
Exc+D03	Mean	12.9	12.9	12.9	12.4	12.2	12.3	12.6	12.6	12.6
-				0=5	_					
Treatment			df	SED	F pr.					
Folicur			43	0.195	0.006					
Variety			43	0.195	<0.001					
N managem	ent		43	0.195	0.831					
Nrate			43	0.195	0.020					
Fol x Var			43	0.275	0.276					
Fol x Man			43	0.275	0.590					
Var x Man			43	0.275	0.432					
Fol x Nrate			43	0.275	0.485					
Var x Nrate			43	0.275	0.019					
Man x Nrate			43	0.275	0.156					
Fol x Var x N	<i>l</i> lan		43	0.389	0.698					
Fol x Var x N	Vrate		43	0.389	0.710					
Fol x Man x	Nrate		43	0.389	0.745					
Var x Man x	Nrate		43	0.389	0.100					
Fol x Var x N	/lan x Nr	ate	43	0.551	0.387					

Table 79. Rosemaund. Percentage of light intercepted by the pods and flowers.

Variety	N rate	No Fol	icur		Folicur	(0.5 l/ha)	<u> </u>	Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	71.0	65.5	68.3	68.7	66.4	67.5	69.9	65.9	67.9
Excalibur	240	71.7	71.1	71.4	73.1	67.1	70.1	72.4	69.1	70.8
Excalibur	Mean	71.3	68.3	69.8	70.9	66.8	68.8	71.1	67.5	69.3
PR45D03	120	71.7	71.8	71.7	71.0	69.0	70.0	71.3	70.4	70.8
PR45D03	240	75.6	70.5	73.0	75.3	72.4	73.9	75.5	71.4	73.5
PR45D03	Mean	73.6	71.1	72.4	73.1	70.7	71.9	73.4	70.9	72.1
E D00	400	74.0	00.0	70.0	00.0	07.7	00.0	70.0	70.0	00.4
Exc+D03	120	71.3	68.6	70.0	69.8	67.7	68.8	70.6	73.9	69.4
Exc+D03	240	73.7	70.8	72.2	74.2	69.8	72.0	73.9	70.3	72.1
Exc+D03	Mean	72.5	69.7	71.1	72.0	68.7	70.4	72.3	69.2	70.7
Treatment			df	SED	F pr.					
rreatment			ui	SLD	ι ρι.					
Folicur			43	1.261	0.566					
Variety			43	1.261	0.031					
N managem	nent		43	1.261	0.020					
Nrate			43	1.261	0.035					
Fol x Var			43	1.784	0.827					
Fol x Man			43	1.784	0.838					
Var x Man			43	1.784	0.662					
Fol x Nrate			43	1.784	0.695					
Var x Nrate			43	1.784	0.914					
Man x Nrate)		43	1.784	0.635					
Fol x Var x	Man		43	2.523	0.803					
Fol x Var x	Nrate		43	2.523	0.536					
Fol x Man x	Nrate		43	2.523	0.686					
Var x Man x	Nrate		43	2.523	0.463					
Fol x Var x	Man x Nra	te	43	3.567	0.209					

Table 80. Rosemaund. Percentage of light intercepted at ground level by the whole canopy.

Variety	N rate	No Foli	icur		Folicur (0).5 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	98.6	98.4	98.5	97.3	97.9	97.6	98.0	98.2	98.1
Excalibur	240	98.8	99.2	99.0	98.5	98.9	98.7	98.6	99.0	98.8
Excalibur	Mean	98.7	98.8	98.7	97.9	98.4	98.2	98.3	98.6	98.4
PR45D03	120	98.7	98.3	98.5	98.1	97.7	97.9	98.4	98.0	98.2
PR45D03	240	98.8	98.7	98.8	98.5	99.3	98.9	98.7	99.0	98.8
PR45D03	Mean	98.8	98.5	98.6	98.3	98.5	98.4	98.6	98.5	98.5
_										
Exc+D03	120	98.6	98.3	98.5	97.7	97.8	97.8	98.2	98.1	98.1
Exc+D03	240	98.8	98.9	98.9	98.5	99.1	98.8	98.7	99.0	98.8
Exc+D03	Mean	98.7	98.6	98.7	98.1	98.4	98.3	98.4	98.5	98.5
T			.16	OED	F					
Treatment			df	SED	F pr.					
Folicur			43	0.1798	0.029					
Variety			43	0.1798	0.711					
N managem	nent		43	0.1798	0.542					
Nrate			43	0.1798	<0.001					
Fol x Var			43	0.2543	0.326					
Fol x Man			43	0.2543	0.273					
Var x Man			43	0.2543	0.303					
Fol x Nrate			43	0.2543	0.079					
Var x Nrate			43	0.2543	0.710					
Man x Nrate	9		43	0.2543	0.214					
Fol x Var x	Man		43	0.3596	0.974					
Fol x Var x	Nrate		43	0.3596	0.846					
Fol x Man x	Nrate		43	0.3596	0.889					
Var x Man x	Nrate		43	0.3596	0.408					
Fol x Var x	Man x Nra	te	43	0.5085	0.273					

Crop height

At all sites, there was a large and significant difference in height between Excalibur and the semidwarf PR45D03, but no effect of Folicur or N rate. Canopy Management significantly affected height at only one of the three sites.

At Terrington, Excalibur was 31 cm taller than PR45D03 (Table 81). Height was not significantly affected by N rate, Canopy Management or Folicur treatment.

At Thornholme, Excalibur was 39 cm taller than PR45D03 and Canopy Management reduced height by an average of 3 cm across both varieties and N rates (Table 82). Height was not significantly affected by N rate or Folicur treatment.

At Rosemaund, Excalibur was 45 cm taller than PR45D03 (Table 83). Height was not significantly affected by N rate, Canopy Management or Folicur treatment.

 Table 81. Terrington. Height (cm) to the top of terminal raceme.

Variety	N rate	No Foli	cur		Folicur (1	I.0 I/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	140	115	118	117	117	116	116	116	117	117
Excalibur	280	117	116	116	116	118	117	117	117	117
Excalibur	Mean	116	117	117	117	117	117	117	117	117
PR45D03	140	87	93	90	86	85	86	86	89	88
PR45D03	280	85	88	86	80	85	82	82	86	84
PR45D03	Mean	86	90	88	83	85	84	84	88	86
Exc+D03	140	101	106	103	102	101	101	101	103	102
Exc+D03	280	101	102	101	98	102	100	100	102	101
Exc+D03	Mean	101	104	102	100	101	100	100	102	101
Treatment			df	SED	F pr.					
- "			45	4 ===	0.040					
Folicur			45	1.577	0.242					
Variety			45	1.577	<0.001					
N managen	nent		45	1.577	0.212					
Nrate			45	1.577	0.325					
Fol x Var			45	2.230	0.186					
Fol x Man			45	2.230	0.620					
Var x Man			45	2.230	0.355					
Fol x Nrate			45	2.230	0.790					
Var x Nrate			45	2.230	0.245					
Man x Nrate			45	2.230	0.908					
Fol x Var x			45	3.154	0.745					
Fol x Var x			45	3.154	0.877					
Fol x Man x			45	3.154	0.196					
Var x Man			45	3.154	0.816					
Fol x Var x	Man x Nra	te	45	4.460	0.935					

Table 82. Thornholme. Height (cm) to the top of terminal raceme.

Variety	N rate	No Foli	icur		Folicur (1	I.0 I/ha)		Conv	СМ	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	157	151	154	153	156	154	155	153	154
Excalibur	240	155	152	154	157	150	153	156	151	154
Excalibur	Mean	156	151	154	155	153	154	155	152	154
PR45D03	120	119	116	117	116	111	114	118	113	116
PR45D03	240	116	115	116	114	111	112	115	113	114
PR45D03	Mean	117	116	116	115	111	113	116	113	115
Exc+D03	120	138	133	136	135	134	134	136	133	135
Exc+D03	240	135	134	135	135	130	133	135	132	134
Exc+D03	Mean	137	133	135	135	132	134	136	133	134
T			-16	0ED	-					
Treatment			df	SED	F pr.					
Folicur			45	1.362	0.256					
Variety			45	1.362	<0.001					
N managen	nent		45	1.362	0.026					
Nrate			45	1.362	0.446					
Fol x Var			45	1.926	0.212					
Fol x Man			45	1.926	0.961					
Var x Man			45	1.926	0.930					
Fol x Nrate			45	1.926	0.973					
Var x Nrate			45	1.926	0.696					
Man x Nrate	Э		45	1.926	0.858					
Fol x Var x	Man		45	2.724	0.354					
Fol x Var x	Nrate		45	2.724	0.864					
Fol x Man x	Nrate		45	2.724	0.212					
Var x Man	Nrate		45	2.724	0.306					
Fol x Var x	Man x Nra	te	45	3.853	0.306					

Table 83. Rosemaund. Height (cm) to the top of terminal raceme.

Variety	N rate	No Foli	icur		Folicur (1	.0 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	120	165	162	163	162	163	162	164	162	163
Excalibur	240	165	165	165	167	161	164	166	163	165
Excalibur	Mean	165	163	164	165	162	163	165	163	164
PR45D03	120	120	119	119	119	117	118	119	118	119
PR45D03	240	120	118	119	119	119	119	120	118	119
PR45D03	Mean	120	118	119	119	118	118	119	118	119
Exc+D03	120	142	140	141	141	140	140	141	140	141
Exc+D03	240	143	142	142	143	140	142	143	141	142
Exc+D03	Mean	142	141	142	142	140	141	142	140	141
_					_					
Treatment			df	SED	F pr.					
Foliour.			45	0.000	0.440					
Folicur			45 45	0.962	0.418					
Variety			45 45	0.962	<0.001					
N managen	nent		45	0.962	0.062					
Nrate			45	0.962	0.210					
Fol x Var			45	1.361	0.842					
Fol x Man			45 	1.361	0.809					
Var x Man			45	1.361	0.610					
Fol x Nrate			45	1.361	0.671					
Var x Nrate			45	1.361	0.462					
Man x Nrate			45	1.361	0.751					
Fol x Var x	Man		45	1.924	0.834					
Fol x Var x	Nrate		45	1.924	0.703					
Fol x Man x	Nrate		45	1.924	0.382					
Var x Man	k Nrate		45	1.924	0.573					
Fol x Var x	Man x Nra	te	45	2.722	0.120					

Lodging

At Terrington and Thornholme, there was no lodging. At Rosemaund there was a very small amount of leaning (Table 84). Although this was probably insufficient to affect yield, it was significantly reduced by Folicur treatment and slightly lower for PR45D03 than Excalibur (P<0.1). There was a significant interaction between Folicur and variety, with Folicur reducing lodging by more for Excalibur than PR45D03. These lodging effects do not correspond to the height measurements, which showed no effect of Folicur at Rosemaund (Table 83), which therefore indicates that changes to other canopy characteristics may have caused the differences in lodging risk.

Table 84. Rosemaund. Percentage of plot area leaning at 10-45 degrees from vertical, at harvest.

Variety	N rate	No Fol	icur		Folicur	(0.5 l/ha)	Conv	CM	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Excalibur	0	2.50		2.50	0.00		0.00	1.25		1.25
Excalibur	70	2.50	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.63
Excalibur	140	2.50	0.00	1.25	1.25	0.00	0.63	1.88	0.00	0.94
Excalibur	210	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Excalibur	280	2.50	2.50	2.50	0.00	0.00	0.00	1.25	1.25	1.25
Excalibur	350	1.25	1.25	1.25	0.00	1.25	0.63	0.63	1.25	0.94
Excalibur	Mean	1.88	1.04	1.46	0.21	0.21	0.21	1.04	0.63	0.83
PR45D03	0	1.25		1.25	1.25		1.25	1.25		1.25
PR45D03	70	1.25	0.00	0.63	0.00	0.00	0.00	0.63	0.00	0.31
PR45D03	140	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PR45D03	210	0.00	0.00	0.00	0.00	1.25	0.63	0.00	0.63	0.31
PR45D03	280	0.00	1.25	0.63	0.00	0.00	0.00	0.00	0.63	0.31
PR45D03	350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PR45D03	Mean	0.42	0.42	0.42	0.21	0.42	0.31	0.31	0.42	0.36
Exc+D03	0	1.88		1.88	0.63		0.63	1.25		1.25
Exc+D03	70	1.88	0.00	0.94	0.00	0.00	0.00	0.94	0.00	0.47
Exc+D03	140	1.25	0.00	0.63	0.63	0.00	0.31	0.94	0.00	0.47
Exc+D03	210	0.00	0.00	0.00	0.00	0.63	0.31	0.00	0.31	0.16
Exc+D03	280	1.25	1.88	1.56	0.00	0.00	0.00	0.63	0.94	0.78
Exc+D03	350	0.63	0.63	0.63	0.00	0.63	0.31	0.31	0.63	0.47
Exc+D03	Mean	1.15	0.73	0.94	0.21	0.31	0.26	0.68	0.52	0.60
Treatment			df	SED	F pr.					
Folicur			141	0.258	0.010					
Variety			141	0.258	0.071					
N managen	nent		141	0.258	0.545					
N rate	TOTAL		141	0.446	0.223					
Fol x Var			141	0.365	0.028					
Fol x Man			141	0.365	0.314					
Var x Man			141	0.365	0.314					
Fol x Nrate			141	0.631	0.304					
Var x Nrate			141	0.631	0.580					
Man x Nrate			141	0.631	0.447					
Fol x Var x			141	0.515	0.545					
Fol x Var x			141	0.893	0.825					
Fol x Man x			141	0.893	0.825					
Var x Man x			141	0.893	0.825					
Fol x Var x		te	141	1.263	0.973					
- OIA VOIA	A 1410			1.200	0.070					

Biomass at harvest

At Terrington, increasing N rate from 0 to 280 kg N/ha significantly increased the biomass of all plant parts. Excalibur had a significantly higher stem biomass than PR45D03. The total biomass of Excalibur was about 0.6 t/ha greater than PR45D03, but this difference was not statistically significant. There were no significant effects of Canopy Management (Table 85).

At Thornholme, increased N rate significantly (P < 0.05) increased the biomass of the seeds, stems and whole crop, but not of pod walls (P = 0.125; Table 86). There were no effects of variety or Canopy Management on total biomass or the fractions of plant biomass.

At Rosemaund, as at Terrington, increased N rate significantly increased the biomass of all plant parts, Excalibur had a higher stem biomass than PR45D03. The total biomass of Excalibur was about 1 t/ha greater than PR45D03, but this difference was not statistically significant. There were no significant effects of Canopy Management (Table 87).

Table 85. Terrington. Pre-harvest measurement of dry matter (t/ha) for plots without Folicur.

Variety	N rate	Total pl	ant dry ma	atter (t/ha)	Seed d	ry matter (t/	ha)	Stem d	ry matter (t/	ha)	Pod wa	III dry matte	r (t/ha)
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Conv	СМ	Mean	Conv	СМ	Mean
Excalibur	0	4.55		4.55	1.39		1.39	1.67		1.67	1.49		1.49
Excalibur	280	8.95	8.42	8.69	3.16	3.11	3.14	3.07	2.72	2.90	2.72	2.59	2.65
Excalibur	Mean	6.75	6.49	6.62	2.28	2.25	2.26	2.37	2.20	2.28	2.11	2.04	2.07
PR45D03	0	4.50		4.50	1.64		1.64	1.33		1.33	1.53		1.53
PR45D03	280	7.29	7.73	7.51	2.96	3.16	3.06	2.13	2.24	2.18	2.20	2.33	2.27
PR45D03	Mean	5.89	6.11	6.00	2.30	2.40	2.35	1.73	1.78	1.76	1.87	1.93	1.90
Exc+D03	0	4.53		4.53	1.52		1.52	1.50		1.50	1.51		1.51
Exc+D03	280	8.12	8.07	8.10	3.06	3.13	3.10	2.60	2.48	2.54	2.46	2.46	2.46
Exc+D03	Mean	6.32	6.30	6.31	2.29	2.32	2.31	2.05	1.99	2.02	1.99	1.98	1.98
Treatment		df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.
Variety		21	0.381	0.121	21	0.1183	0.473	21	0.1504	0.002	21	0.1431	0.236
N managem	ent	21	0.381	0.950	21	0.1183	0.764	21	0.1504	0.701	21	0.1431	0.990
Nrate		21	0.381	< 0.001	21	0.1183	< 0.001	21	0.1504	< 0.001	21	0.1431	< 0.001
Var x Man		21	0.539	0.531	21	0.1673	0.591	21	0.2127	0.459	21	0.2023	0.655
Var x Nrate		21	0.539	0.155	21	0.1673	0.177	21	0.2127	0.233	21	0.2023	0.152
Man x Nrate	:	21	0.539	0.950	21	0.1673	0.764	21	0.2127	0.701	21	0.2023	0.990
Var x Man x	Nrate	21	0.762	0.531	21	0.2367	0.591	21	0.3008	0.459	21	0.2861	0.655

Table 86. Thornholme. Pre-harvest measurement of dry matter (t/ha) for plots without Folicur.

Variety	N rate	Total pl	ant dry ma	atter (t/ha)	Seed di	y matter (t/	ha)	Stem d	ry matter (t	t/ha)	Pod wa	Il dry matte	er (t/ha)
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	10.8		10.8	2.90		2.90	4.15		4.15	3.75		3.75
Excalibur	240	14.1	12.4	13.2	4.57	4.32	4.44	5.34	4.39	4.86	4.16	3.66	3.91
Excalibur	Mean	12.4	11.6	12.0	3.73	3.61	3.67	4.74	4.27	4.51	3.95	3.70	3.83
PR45D03	0	10.8		10.8	3.18		3.18	3.76		3.76	3.84		3.84
PR45D03	240	12.8	13.6	13.2	4.27	4.49	4.38	4.36	4.54	4.45	4.21	4.56	4.38
PR45D03	Mean	11.8	12.2	12.0	3.72	3.83	3.78	4.06	4.15	4.11	4.02	4.20	4.11
Exc+D03	0	10.8		10.8	3.04		3.04	3.96		3.96	3.79		3.79
Exc+D03	240	13.5	13.0	13.2	4.42	4.41	4.41	4.85	4.47	4.66	4.19	4.11	4.15
Exc+D03	Mean	12.1	11.9	12.0	3.73	3.72	3.73	4.40	4.21	4.31	3.99	3.95	3.97
Treatment		df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.
Variety		21	0.483	0.969	21	0.1186	0.394	21	0.253	0.125	21	0.228	0.231
N managem	ent	21	0.483	0.631	21	0.1186	0.963	21	0.253	0.456	21	0.228	0.871
Nrate		21	0.483	<.001	21	0.1186	<.001	21	0.253	0.011	21	0.228	0.135
Var x Man		21	0.683	0.222	21	0.1678	0.34	21	0.358	0.282	21	0.322	0.361
Var x Nrate		21	0.683	0.98	21	0.1678	0.17	21	0.358	0.967	21	0.322	0.411
Man x Nrate		21	0.683	0.631	21	0.1678	0.963	21	0.358	0.456	21	0.322	0.871
Var x Man x	Nrate	21	0.966	0.222	21	0.2373	0.34	21	0.506	0.282	21	0.456	0.361

Table 87. Rosemaund. Pre-harvest measurement of dry matter (t/ha) for plots without Folicur.

Variety	N rate	Total pl	ant dry ma	itter (t/ha)	Seed di	ry matter (t/	ha)	Stem d	ry matter (t/ha)	Pod wa	II dry matt	er (t/ha)
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	9.57		9.57	3.14		3.14	3.73		3.73	2.71		2.71
Excalibur	240	14.15	12.98	13.56	4.30	4.32	4.31	5.29	4.77	5.03	4.56	3.89	4.22
Excalibur	Mean	11.90	11.23	11.57	3.76	3.68	3.72	4.50	4.26	4.38	3.64	3.29	3.47
PR45D03	0	8.24		8.24	2.99		2.99	2.83		2.83	2.41		2.41
PR45D03	240	12.12	13.73	12.93	4.54	4.46	4.50	3.87	4.61	4.24	3.72	4.66	4.59
PR45D03	Mean	10.15	11.02	10.58	3.77	3.73	3.75	3.33	3.74	3.54	3.05	3.55	3.30
Exc+D03	0	8.90		8.90	3.06		3.06	3.28		3.28	2.56		2.56
Exc+D03	240	13.13	13.35	13.24	4.42	4.39	4.40	4.58	4.69	4.63	4.14	4.27	4.21
Exc+D03	Mean	11.02	11.12	11.07	3.76	3.70	3.73	3.92	4.00	3.96	3.34	3.42	3.38
Treatment		df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.	df	SED	F Pr.
Variety		17	0.786	0.227	17	0.1476	0.876	17	0.271	0.006	17	0.431	0.708
N managem	ent	17	0.786	0.899	17	0.1476	0.698	17	0.271	0.769	17	0.431	0.857
Nrate		17	0.786	< 0.001	17	0.1476	< 0.001	17	0.271	< 0.001	17	0.431	0.001
Var x Man		17	1.111	0.344	17	0.2088	0.900	17	0.384	0.249	17	0.610	0.341
Var x Nrate		17	1.111	0.663	17	0.2088	0.276	17	0.384	0.850	17	0.610	0.766
Man x Nrate		17	1.111	0.884	17	0.2088	0.863	17	0.384	0.900	17	0.610	0.898
Var x Man x	Nrate	17	1.572	0.440	17	0.2953	0.664	17	0.543	0.274	17	0.862	0.390

Crop N content

At Terrington, increasing N rate from 0 to 280 kg N/ha increased the total N uptake from 56 to 134 kg N/ha (Table 89). This effect was caused by a combination of greater biomass (Table 85) and greater tissue N concentration (Table 88) in both the seed and other plant parts. There were no significant differences between Excalibur and PR45D03 in total N uptake, although Excalibur did have a higher seed N concentration than PR45D03. There were no significant effects of Canopy Management.

At Thornholme, increasing N rate from 0 to 240 kg N/ha increased the total N uptake from 132 to 221 kg N/ha (Table 91). This effect was caused by a combination of greater biomass (Table 86) and greater tissue N concentration (Table 90) in both the seed and stems. Although Excalibur gave 0.22 % higher (P = 0.003; Table 90) seed N concentration when averaged over N rates, there was no significant difference in the seed N yield or total N uptake (Table 91). There was no effect of N management on N uptake, although there was some evidence that the Canopy Management treatment gave greater seed N concentrations (P = 0.082; Table 90).

At Rosemaund, increasing N rate from 0 to 240 kg N/ha increased the total N uptake from 113 to 242 kg N/ha (Table 93). This effect was caused by a combination of greater biomass (Table 87) and greater tissue N concentration (Table 92) in both the seed and other plant parts. There were no significant effects of Canopy Management or variety on total N uptake. There was an interaction between variety and N rate for seed N concentration, such that N concentration responded more to N application in PR45D03 than Excalibur.

Table 88. Terrington. Pre-harvest measurement of nitrogen concentration for plots without Folicur.

Variety	N rate	Seed N	%		Stem ar	nd pod wall	N %
	kg/ha	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	2.432		2.432	0.684		0.684
Excalibur	280	2.889	3.055	2.972	0.828	0.908	0.868
Excalibur	Mean	2.660	2.744	2.702	0.756	0.796	0.776
PR45D03	0	2.240		2.240	0.678		0.678
PR45D03	280	2.631	2.830	2.731	0.881	0.957	0.919
PR45D03	Mean	2.436	2.535	2.485	0.780	0.817	0.798
Exc+D03	0	2.336		2.336	0.681		0.681
Exc+D03	280	2.760	2.943	2.851	0.854	0.933	0.894
Exc+D03	Mean	2.548	2.640	2.594	0.768	0.807	0.787
Treatment		df	SED	F pr.	df	SED	F pr.
Variety		21	0.0557	<0.001	21	0.0330	0.498
N manageme	ent	21	0.0557	0.115	21	0.0330	0.249
Nrate		21	0.0557	< 0.001	21	0.0330	<0.001
Var x Man		21	0.0788	0.885	21	0.0466	0.970
Var x Nrate		21	0.0788	0.662	21	0.0466	0.397
Man x Nrate		21	0.0788	0.115	21	0.0466	0.249
Var x Man x	Nrate	21	0.1114	0.885	21	0.0659	0.970

Table 89. Terrington. Pre-harvest measurement of N content for plots without Folicur.

Variety	N rate	Seed N	N yield (I	kg/ha)		and pod	wall N	Total N	yield (kg/	/ha)
	kg/ha	Conv	СМ	Mean	yield (ł Conv	cg/na) CM	Mean	Conv	СМ	Mean
Excalibur	0	33.9		33.9	22.5		22.5	56.4		56.4
Excalibur	280	91.7	95.0	93.3	48.7	48.8	48.7	140.4	143.7	142.0
Excalibur	Mean	62.8	64.5	63.6	35.6	35.6	35.6	98.4	100.1	99.2
PR45D03	0	36.8		36.8	19.4		19.4	56.2		56.2
PR45D03	280	78.5	89.5	84.0	38.7	44.1	41.4	117.2	133.6	125.4
PR45D03	Mean	57.6	63.2	60.4	29.1	31.8	30.4	86.7	94.9	90.8
Exc+D03	0	35.4		35.4	21.0		21.0	56.3		56.3
Exc+D03	280	85.1	92.2	88.7	43.7	46.4	45.0	128.8	138.7	133.7
Exc+D03	Mean	60.2	63.8	62.0	32.3	33.7	33.0	92.6	97.5	95.0
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	3.95	0.420	21	3.51	0.154	21	6.96	0.239
N managem	ent	21	3.95	0.377	21	3.51	0.697	21	6.96	0.485
Nrate		21	3.95	< 0.001	21	3.51	< 0.001	21	6.96	<0.001
Var x Man		21	5.58	0.627	21	4.96	0.708	21	9.84	0.642
Var x Nrate		21	5.58	0.138	21	4.96	0.550	21	9.84	0.251
Man x Nrate		21	5.58	0.377	21	4.96	0.697	21	9.84	0.485
Var x Man x	Nrate	21	7.89	0.627	21	7.01	0.708	21	13.91	0.642

Table 90. Thornholme. Pre-harvest measurement of nitrogen concentration for plots without Folicur.

Variety	N rate	Seed N	N %		Stem a	and pod w	all N %
	kg/ha	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	2.42		2.42	0.78		0.78
Excalibur	240	3.07	3.35	3.21	0.99	0.96	0.97
Excalibur	Mean	2.75	2.89	2.82	0.88	0.87	0.87
PR45D03	0	2.35		2.35	0.74		0.74
PR45D03	240	2.77	2.95	2.86	0.91	1.03	0.97
PR45D03	Mean	2.56	2.65	2.60	0.83	0.89	0.86
Exc+D03	0	2.39		2.39	0.76		0.76
Exc+D03	240	2.92	3.15	3.03	0.95	1.00	0.97
Exc+D03	Mean	2.65	2.77	2.71	0.85	0.88	0.87
Treatment		df	SED	F pr.	df	SED	F pr.
Variety		21	0.0636	0.003	21	0.0433	0.691
N manager	nent	21	0.0636	0.082	21	0.0433	0.572
Nrate		21	0.0636	<.001	21	0.0433	<.001
Var x Man		21	0.0899	0.704	21	0.0613	0.405
Var x Nrate	;	21	0.0899	0.046	21	0.0613	0.75
Man x Nrat	е	21	0.0899	0.082	21	0.0613	0.572
Var x Man	x Nrate	21	0.1271	0.704	21	0.0867	0.405

Table 91. Thornholme. Pre-harvest measurement of N content for plots without Folicur.

Variety	N rate	Seed N	N yield (k	(g/ha)	Stem a	and pod	wall N	Total N	l yield (k	g/ha)
	kg/ha	Conv	СМ	Mean	Conv	CM	Mean	Conv	СМ	Mean
Excalibur	0	74.6		74.6	63.0		63.0	133.3		133.3
Excalibur	240	118.2	132.4	125.3	96.7	77.5	87.1	237.3	222.7	230.0
Excalibur	Mean	96.4	103.5	100.0	79.9	70.2	75.0	185.3	178.0	181.7
PR45D03	0	70.4		70.4	56.3		56.3	130.9		130.9
PR45D03	240	140.6	145.2	142.9	77.9	94.1	86.0	196.2	226.5	211.3
PR45D03	Mean	105.5	107.8	106.6	67.1	75.2	71.1	163.5	178.7	171.1
Exc+D03	0	72.5		72.5	59.6		59.6	132.1		132.1
Exc+D03	240	129.4	138.8	134.1	87.3	85.8	86.6	216.8	224.6	220.7
Exc+D03	Mean	101.0	105.7	103.3	73.5	72.7	73.1	174.4	178.4	176.4
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		21	4.37	0.142	21	6.06	0.527	21	8.84	0.246
N manager	ment	21	4.37	0.293	21	6.06	0.9	21	8.84	0.661
Nrate		21	4.37	<.001	21	6.06	<.001	21	8.84	<.001
Var x Man		21	6.18	0.591	21	8.57	0.159	21	12.51	0.218
Var x Nrate)	21	6.18	0.021	21	8.57	0.65	21	12.51	0.369
Man x Nrat	e	21	6.18	0.293	21	8.57	0.9	21	12.51	0.661
Var x Man	x Nrate	21	8.73	0.591	21	12.12	0.159	21	17.69	0.218

 Table 92. Rosemaund. Pre-harvest measurement of nitrogen concentration for plots without Folicur.

Variety	N rate	Seed N	%		Stem ar	nd pod wall	N %
	kg/ha	Conv	CM	Mean	Conv	CM	Mean
Excalibur	0	2.455		2.455	0.680		0.680
Excalibur	240	3.181	2.962	3.071	1.272	1.046	1.159
Excalibur	Mean	2.818	2.709	2.763	0.976	0.863	0.920
PR45D03	0	2.310		2.310	0.663		0.663
PR45D03	240	3.102	3.130	3.116	1.066	1.058	1.062
PR45D03	Mean	2.706	2.720	2.713	0.865	0.861	0.863
Exc+D03	0	2.38		2.383	0.672		0.672
Exc+D03	240	3.14	3.05	3.094	1.169	1.052	1.111
Exc+D03	Mean	2.762	2.714	2.738	0.921	0.862	0.891
Treatment		df	SED	F pr.	df	SED	F pr.
Variety		21	0.0370	0.190	21	0.0792	0.481
N manageme	ent	21	0.0370	0.211	21	0.0792	0.466
Nrate		21	0.0370	<0.001	21	0.0792	<0.001
Var x Man		21	0.0523	0.110	21	0.1120	0.497
Var x Nrate		21	0.0523	0.018	21	0.1120	0.618
Man x Nrate		21	0.0523	0.211	21	0.1120	0.466
Var x Man x	Nrate	21	0.0740	0.110	21	0.1584	0.497

Table 93. Rosemaund. Pre-harvest measurement of N content for plots without Folicur.

Variety	N rate	Seed N	l yield (kg	ı/ha)	Stem a (kg/ha)	•	all N yield	Total N	yield (kg/	/ha))
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Conv	СМ	Mean
Excalibur	0	79.1		79.1	42.7		42.7	121.8		121.8
Excalibur	240	134.4	127.6	131.0	130.6	95.7	113.2	265.1	223.4	244.2
Excalibur	Mean	106.8	103.3	105.1	86.7	69.2	78.0	193.4	172.6	183.0
PR45D03	0	69.4		69.4	34.4		34.4	103.7		103.7
PR45D03	240	140.6	142.3	141.5	81.6	114.8	98.2	222.3	257.2	139.7
PR45D03	Mean	105.0	105.9	105.4	58.0	74.6	66.3	163.0	180.5	171.7
Exc+D03	0	74.2		74.2	38.6		38.6	112.8		112.8
Exc+D03	240	137.5	135.0	136.3	106.1	105.3	105.7	243.7	240.3	242.0
Exc+D03	Mean	105.9	104.6	105.2	72.3	71.9	72.1	178.2	176.5	177.4
Treatment		df	SED	F pr.	df	SED	F pr.	df	SED	F pr.
Variety		17	4.24	0.931	17	13.90	0.413	17	16.16	0.494
N managem	ent	17	4.24	0.767	17	13.90	0.976	17	16.16	0.918
Nrate		17	4.24	<0.001	17	13.90	<0.001	17	16.16	<0.001
Var x Man		17	5.99	0.622	17	19.66	0.238	17	22.86	0.252
Var x Nrate		17	5.99	0.029	17	19.66	0.816	17	22.86	0.679
Man x Nrate)	17	5.99	0.767	17	19.66	0.976	17	22.86	0.918
Var x Man x	Nrate	17	8.48	0.622	17	27.81	0.238	17	32.33	0.252

Seed size and seed number

At Terrington, increasing N rate significantly reduced seed weight (Table 94), showing that the yield response to N must have been caused entirely by increased seed number (Table 95). Canopy Management also caused a small but significant increase in seed weight, relative to conventional N timings. There were no significant effects of Folicur or variety on seed size. Besides the effect of N rate on seed number, there were slight increases due to Folicur and PR45D03 (P<0.1), showing that the yield effect of Folicur was also through increased seed number.

At Thornholme, PR45D03 gave significantly (P<0.001) smaller seed size but a significantly greater number (P = 0.01) of seeds than Excalibur (Tables 96 and 97); TSW was 5.37 and 5.59 g for PR45D03 and Excalibur, respectively. There was a significant interaction (P = 0.003) in TSW between variety and N rate whereby in Excalibur TSW was reduced when N was applied but in PR45D03, TSW did not differ up to the 180 kg N/ha N rate and was increased at 300 kgN/ha

(Table 96). This was not seen in the seed number data, but the highly significant increases in seed number with N rate showed that most of the increase in yield due to increasing N rate can be explained by seed numbers rather than seed size (Table 97). There was also a significant (P = 0.004) Folicur x N rate interaction on TSW; where no Folicur was applied TSW was reduced when N was applied whereas when Folicur was applied this was not the case (Table 96).

At Rosemaund, none of the factors tested had a significant effect on seed weight (Table 98). Seed number was significantly increased by increased N rate and by Folicur application (Table 99), showing that the yield results are entirely due to differences in seed number, rather than seed weight.

Table 94. Terrington. Thousand seed weight (g) at 91% DM.

Variety	N rate	No Fol	icur		Folicur ((0.5 l/ha)		Conv	СМ	Grand
	kg/ha	Conv	СМ	Mean	Conv	CM	Mean	Mean	Mean	Mean
E Ph	^	E 47		F 47	5.00		5.00	5.00		5.00
Excalibur	0	5.17	F 00	5.17	5.02	T 40	5.02	5.09	F 00	5.09
Excalibur	70	5.14	5.03	5.08	4.90	5.10	5.00	5.02	5.06	5.04
Excalibur	210	4.92	4.89	4.91	4.99	5.07	5.03	4.96	4.98	4.97
Excalibur	350	4.94	4.95	4.94	4.49	5.12	4.81	4.72	5.03	4.88
Excalibur	Mean	5.04	5.01	5.02	4.85	5.08	4.96	4.95	5.04	4.99
PR45D03	0	4.99		4.99	5.58		5.58	5.29		5.29
PR45D03	70	4.94	4.75	4.84	4.62	5.17	4.89	4.78	4.96	4.87
PR45D03	210	4.84	4.78	4.81	4.85	4.91	4.88	4.85	4.85	4.85
PR45D03	350	4.80	5.01	4.91	4.83	5.12	4.97	4.82	5.07	4.94
PR45D03	Mean	4.89	4.88	4.89	4.97	5.20	5.08	4.93	5.04	4.99
Exc+D03	0	5.08		5.08	5.30		5.30	5.19		5.19
Exc+D03	70	5.04	4.89	4.96	4.76	5.14	4.95	4.90	5.01	4.95
Exc+D03	210	4.88	4.84	4.86	4.92	4.99	4.96	4.90	4.91	4.91
Exc+D03	350	4.87	4.98	4.93	4.66	5.12	4.89	4.77	5.05	4.91
Exc+D03	Mean	4.97	4.95	4.96	4.91	5.14	5.02	4.94	5.04	4.99
Treatment			df	SED	F pr.					
Folicur			93	0.0467	0.158					
Variety			93	0.0467	0.875					
N manager	ment		93	0.0467	0.031					
Nrate			93	0.0660	<0.001					
Fol x Var			93	0.0660	0.008					
Fol x Man			93	0.0660	0.009					
Var x Man			93	0.0660	0.898					
Fol x Nrate			93	0.0933	0.186					
Var x Nrate)		93	0.0933	0.023					
Man x Nrat	е		93	0.0933	0.127					
Fol x Var x	Man		93	0.0933	0.883					
Fol x Var x	Nrate		93	0.1320	0.024					
Fol x Man	k Nrate		93	0.1320	0.186					
Var x Man	x Nrate		93	0.1320	0.889					
Fol x Var x	Man x N	Vrate	93	0.1866	0.333					

Table 95. Terrington. Seeds per m² (calculated from thousand seed weight and combine seed yield).

Variety	N rate	No Folio	cur		Folicur (0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	0	29519		29519	33246		33246	31383		31383
Excalibur	60	47307	50596	48951	49204	47816	48510	48255	49206	48731
Excalibur	180	68445	69000	68723	72644	72640	72642	70545	70820	70682
Excalibur	300	74504	71808	73156	89184	74332	81758	81844	73070	77457
Excalibur	Mean	54944	55231	55087	61070	57008	59039	58007	56120	57063
PR45D03	0	36228		36228	33147		33147	34687		34687
PR45D03	60	49762	57745	53753	58403	52699	55551	54083	55222	54652
PR45D03	180	69513	72987	71250	78801	81817	80309	74157	77402	75780
PR45D03	300	75910	73637	74774	77913	71612	74763	76911	72625	74768
PR45D03	Mean	57853	60149	59001	62066	59819	60942	59960	59984	59972
11140000	Wican	07000	00143	00001	02000	00010	00042	00000	00004	00012
Exc+D03	0	32874		32874	33196		33196	33035		33035
Exc+D03	60	48534	54170	51352	53804	50257	52031	51169	52214	51691
Exc+D03	180	68979	70994	69986	75723	77229	76476	72351	74111	73231
Exc+D03	300	75207	72723	73965	83548	72972	78260	79378	72847	76113
Exc+D03	Mean	56399	57690	57044	61568	58414	59991	58983	58052	58518
Treatment			df	SED	F pr.					
Folicur			93	1713	0.089					
Variety			93	1713	0.093					
N manager	ment		93	1713	0.588					
Nrate			93	2423	<0.001					
Fol x Var			93	2423	0.559					
Fol x Man			93	2423	0.198					
Var x Man			93	2423	0.578					
Fol x Nrate	:		93	3426	0.525					
Var x Nrate)		93	3426	0.283					
Man x Nrat	e		93	3426	0.303					
Fol x Var x	Man		93	3426	0.977					
Fol x Var x	Nrate		93	4845	0.413					
Fol x Man	x Nrate		93	4845	0.680					
Var x Man	x Nrate		93	4845	0.959					
Fol x Var x	Man x Nı	ate	93	6852	0.853					

Table 96. Thornholme. Thousand seed weight (g) at 91% DM.

Variety	N rate	No Fol	icur		Folicur	(0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	СМ	Mean	Conv	СМ	Mean	Mean	Mean	Mean
	_									
Excalibur	0	5.80	- 4-	5.80	5.69	5.00	5.69	5.74	5.50	5.74
Excalibur	60	5.47	5.45	5.46	5.56	5.68	5.62	5.51	5.56	5.54
Excalibur	180	5.55	5.48	5.51	5.60	5.49	5.55	5.58	5.49	5.53
Excalibur	300	5.29	5.69	5.49	5.60	5.69	5.65	5.45	5.69	5.57
Excalibur	Mean	5.52	5.60	5.56	5.61	5.64	5.62	5.57	5.62	5.59
PR45D03	0	5.45		5.45	5.23		5.23	5.34		5.34
PR45D03	60	5.28	5.25	5.26	5.38	5.36	5.37	5.33	5.31	5.32
PR45D03	180	5.27	5.30	5.29	5.31	5.41	5.36	5.29	5.36	5.32
PR45D03	300	5.45	5.52	5.49	5.52	5.51	5.52	5.49	5.51	5.50
PR45D03	Mean	5.36	5.38	5.37	5.36	5.38	5.37	5.36	5.38	5.37
Exc+D03	0	5.62		5.62	5.46		5.46	5.54		5.54
Exc+D03	60	5.37	5.35	5.36	5.47	5.52	5.50	5.42	5.44	5.43
Exc+D03	180	5.41	5.39	5.40	5.46	5.45	5.46	5.43	5.42	5.43
Exc+D03	300	5.37	5.60	5.49	5.56	5.60	5.58	5.47	5.60	5.53
Exc+D03	Mean	5.44	5.49	5.47	5.49	5.51	5.50	5.47	5.50	5.48
Treatment			df	SED	F pr.					
Falleren			00	0.0000	0.000					
Folicur			93	0.0309	0.333					
Variety	ont		93 93	0.0309 0.0309	<.001					
N managem Nrate	ieni		93 93	0.0309	0.277 0.008					
Fol x Var			93	0.0437	0.311					
Fol x Man			93	0.0437	0.684					
Var x Man			93	0.0437	0.587					
Fol x Nrate			93	0.0437	0.004					
Var x Nrate			93	0.0619	0.003					
Man x Nrate)		93	0.0619	0.33					
Fol x Var x I			93	0.0619	0.65					
Fol x Var x I			93	0.0875	0.753					
Fol x Man x			93	0.0875	0.425					
Var x Man x			93	0.0875	0.202					
Fol x Var x I	Man x Nra	te	93	0.1237	0.752					

Table 97. Thornholme. Seeds/m² (calculated from thousand seed weight and combine seed yield).

Variety	N rate	No Folio	cur		Folicur	(0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	CM	Mean	Mean	Mean	Mean
Excalibur	0	53875		53875	64235		64235	59055		59055
Excalibur	60	78860	76068	77464	74036	73063	73549	76448	74565	75507
Excalibur	180	88657	84987	86822	89069	91000	90035	88863	87993	88428
Excalibur	300	96078	88925	92502	95341	91357	93349	95709	90141	92925
Excalibur	Mean	79368	75964	77666	80670	79914	80292	80019	77939	78979
PR45D03	0	63048		63048	68989		68989	66018		66018
PR45D03	60	79518	81222	80370	76709	77291	77000	78114	79256	78685
PR45D03	180	91993	97081	94537	93032	89506	91269	92512	93293	92903
PR45D03	300	93706	91860	92783	90313	93477	91895	92010	92669	92339
PR45D03	Mean	82066	83303	82685	82261	82316	82288	82164	82809	82486
Exc+D03	0	58462		58462	66612		66612	62537		62537
Exc+D03	60	79189	78645	78917	75373	75177	75275	77281	76911	77096
Exc+D03	180	90325	91034	90679	91051	90253	90652	90688	90643	90666
Exc+D03	300	94892	90392	92642	92827	92417	92622	93860	91405	92632
Exc+D03	Mean	80717	79633	80175	81466	81115	81290	81091	80374	80733
Treatment			df	SED	F pr.					
				1000 1	0.404					
Folicur			93	1330.1	0.404					
Variety			93	1330.1	0.01					
N managem	nent		93	1330.1	0.591					
Nrate			93	1881	<.001					
Fol x Var			93	1881	0.259					
Fol x Man			93	1881	0.784					
Var x Man Fol x Nrate			93 93	1881 2660 2	0.308					
Var x Nrate			93	2660.2 2660.2	0.018 0.247					
Man x Nrate			93 93	2660.2	0.247					
Fol x Var x			93	2660.2	0.901					
Fol x Var x			93	3762	0.474					
Fol x Man x			93	3762	0.896					
Var x Man x			93	3762	0.864					
Fol x Var x		ate	93	5320.3	0.712					

Table 98. Rosemaund. Thousand seed weight (g) at 91% DM.

Variety	N rate	No Fol	icur		Folicur	(0.5 l/ha))	Conv	CM	Grand
	kg/ha	Conv	СМ	Mean	Conv	CM	Mean	Mean	Mean	Mean
- m	•	5.00		5.00	5.00		5 .00	5.04		5.04
Excalibur	0	5.29	5 40	5.29	5.20	5 04	5.20	5.24	5.45	5.24
Excalibur	60	5.17	5.10	5.14	5.18	5.21	5.19	5.18	5.15	5.16
Excalibur	180	5.34	5.26	5.30	5.42	5.10	5.26	5.38	5.18	5.28
Excalibur	300	5.44	5.43	5.43	5.51	5.28	5.39	5.47	5.35	5.41
Excalibur	Mean	5.31	5.27	5.29	5.33	5.20	5.26	5.32	5.23	5.28
PR45D03	0	5.16		5.16	5.26		5.26	5.21		5.21
PR45D03	60	5.19	5.32	5.25	5.16	5.30	5.23	5.17	5.31	5.24
PR45D03	180	5.37	5.23	5.30	5.25	5.31	5.28	5.31	5.27	5.29
PR45D03	300	5.21	5.29	5.25	5.26	5.21	5.23	5.24	5.25	5.24
PR45D03	Mean	5.23	5.25	5.24	5.23	5.27	5.25	5.23	5.26	5.25
Exc+D03	0	5.22		5.22	5.23		5.23	5.23		5.23
Exc+D03	60	5.18	5.21	5.20	5.17	5.25	5.21	5.17	5.23	5.20
Exc+D03	180	5.35	5.25	5.30	5.34	5.20	5.27	5.35	5.23	5.29
Exc+D03	300	5.33	5.36	5.34	5.39	5.24	5.31	5.36	5.30	5.33
Exc+D03	Mean	5.27	5.26	5.27	5.28	5.23	5.26	5.28	5.25	5.26
Treatment			df	SED	F pr.					
Folicur			93	0.0409	0.827					
Variety			93	0.0409	0.481					
N managem	nent		93	0.0409	0.464					
Nrate			93	0.0579	0.132					
Fol x Var			93	0.0579	0.678					
Fol x Man			93	0.0579	0.673					
Var x Man			93	0.0579	0.177					
Fol x Nrate			93	0.0818	0.968					
Var x Nrate			93	0.0818	0.185					
Man x Nrate)		93	0.0818	0.467					
Fol x Var x	Man		93	0.0818	0.517					
Fol x Var x	Nrate		93	0.1157	0.706					
Fol x Man x	Nrate		93	0.1157	0.773					
Var x Man x	Nrate		93	0.1157	0.887					
Fol x Var x	Man x Nra	te	93	0.1637	0.677					

Table 99. Rosemaund. seeds/m² (calculated from thousand seed weight and combine seed yield).

Variety	N rate	No Folio	ur		Folicur (0.5 l/ha)		Conv	CM	Grand
	kg/ha	Conv	CM	Mean	Conv	СМ	Mean	Mean	Mean	Mean
Excalibur	0	64773		64773	74942		74942	69858		69858
Excalibur	60	87151	89771	88461	97650	97191	97420	92401	93481	92941
Excalibur	180	77632	100118	88875	95637		105493		107733	
Excalibur	300	92836	93399	93117	104964		106811		101733	
Excalibur	Mean	80598	87015	83807	93298	99035	96167	86948	93025	89987
LXCalibul	Mcan	00000	07013	03007	33230	33000	30107	00340	33023	03307
PR45D03	0	63783		63783	67402		67402	65592		65592
PR45D03	60	80605	78947	79776	85603	92579	89091	83104	85763	84434
PR45D03	180	93423	94183	93803	111108	109109	110109	102265	101646	101956
PR45D03	300	95344	90728	93036	113330	109819	111575	104337	100273	102305
PR45D03	Mean	83289	81910	82599	94361	94727	94544	88825	88319	88572
Exc+D03	0	64278		64278	71172		71172	67725		67725
Exc+D03	60	83878	84359	84119	91626	94885	93256	87752	89622	88687
Exc+D03	180	85527	97150	91339	103373	112229	107801	94450	104690	99570
Exc+D03	300	94090	92063	93077	109147	109239	109193	101619	100651	101135
Exc+D03	Mean	81943	84463	83203	93830	96881	95355	87886	90672	89279
Treatment			df	SED	F pr.					
Folicur			88	1851	<0.001					
Variety			88	1851	0.447					
N manage	ment		88	1851	0.136					
Nrate			88	2618	<0.001					
Fol x Var			88	2618	0.911					
Fol x Man			88	2618	0.886					
Var x Man			88	2618	0.079					
Fol x Nrate)		88	3702	0.167					
Var x Nrate	е		88	3702	0.051					
Man x Nra	te		88	3702	0.135					
Fol x Var x	Man		88	3702	0.744					
Fol x Var x	Nrate		88	5236	0.753					
Fol x Man	x Nrate		88	5236	0.952					
Var x Man	x Nrate		88	5236	0.111					
Fol x Var x	Man x N	Irate	88	7404	0.910					

3.4. Discussion

3.4.1. Economic optimum N rate

There were no differences detected in the economically optimum N rate between Excalibur and PR45D03, due to Canopy Management or due to Folicur in any of the experiments. This was despite differences in the components of yield (seed size and seeds/m²) between the variety types. At Terrington and Rosemaund in 2008/9, PR45D03 produced significantly (P<0.001) more seeds than Excalibur (12% and 11% more seeds/m², respectively), and at all sites in 2008/9 and Thornholme in 2009/10 it had significantly lower thousand seed weight, with reductions of 2.5% to 7.6% relative to Excalibur. The small seeds of PR45D03 indicate that higher yields could be achieved by providing better seed filling conditions. Seed yield, total biomass and total N uptake for the two variety types were similar and it is likely that these characteristics are more important for determining optimum N rate than differences in crop height.

3.4.2. Canopy management

In 2008/9, soil and crop N measured in February was low at all three sites (Table 100). In 2009/10, although the canopies at all three sites were moderate to large before winter, they were reduced by the unusually cold winter weather. Consequently, the canopies measured in February were very small at Terrington and moderate at Thornholme and Rosemaund (Table 101). Therefore, in all experiments the differences in N management between Conventional and Canopy Managed treatments were not as great as they have been in some previous experiments. When SNS is low, it is necessary to apply some early N to the Canopy Managed treatments to allow sufficient time for the crop to take up all the N required to build an optimum sized canopy. This means that the differences in N timing between the Canopy Managed treatments and the Conventionally managed treatments is smaller particularly at the lower N rate treatments.

In 2008/9 Canopy Management did not affect yield at any of the three sites (Table 100). In February the canopies were small, and Canopy Management did not affect the growth up to flowering. There was no evidence that over-large canopies were achieved at flowering with the Conventional N timings, with the largest canopy being at Rosemaund, with GAI 3.2. There were also no significant differences in light interception or reflection at flowering, between Canopy Managed and Conventional treatments in 2008/9. The observation that Canopy Management did not significantly reduce the yield of the semi-dwarf variety (Table 100), even in crops with very small canopies, indicates that Canopy Management is appropriate for semi-dwarf varieties and may increase the yield of semi-dwarfs when canopies following winter are large.

Table 100. 2008/9 experiment summary.

	Terrington		Mowtho	Mowthorpe		aund
Jan/Feb soil mineral N (kg/ha)	34		34		26	
Jan/Feb additionally available N (kg/ha)	17		75		26	
Jan/Feb crop N content (kg/ha)	12		3		22	
Jan/Feb GAI	0.25		0.09		0.57	
N timing strategy	Conv	СМ	Conv	СМ	Conv	СМ
Optimum N rate (kg/ha)	253	253	244	244	209	209
N rate at 1 st split (end Feb/early March)	126	60	122	60	104	60
N rate at 2 nd split (early stem ext.)	125	155	122	184	105	149
N rate at 3 rd split (yellow bud to mid flower)	0	38	0	0	0	0
Yield at opt N Excalibur (t/ha)	4.19	4.04	4.58	4.45	5.21	5.22
Yield at opt N Excalibur + Folicur (t/ha)	4.34	4.26	4.59	4.59	5.02	5.08
Yield at opt N PR45D03 (t/ha)	4.25	4.20	4.30	4.26	5.59	5.53
Yield at opt N PR45D03 + Folicur (t/ha)	4.34	4.34	4.28	4.27	5.04	5.05

Conv – conventional N timing strategy; CM – Canopy Managed N timing strategy.

Additionally available N (AAN) is an estimate of the amount of N that will become available for crop uptake through mineralisation between February and crop maturity.

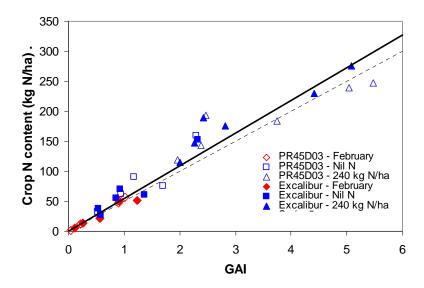
In 2009/10, Canopy Management did not affect yield of either Excalibur or PR45D03 at any of the three sites (Table 101). This season provided a robust test for the Canopy Management approach because the uptake of later Canopy Management N applications were delayed by the dry spring and the third N application was applied later than planned at Thornholme. N uptake by OSR crops has been shown to slow after flowering therefore there is a risk associated with applying N too late. At Thornholme the 3rd N split was applied when PR45D03 was beginning to flower and Excalibur was in full flower. At Rosemaund the crop was less advanced when the 3rd split was applied, but the application was preceded by several days of dry weather and followed by a further two weeks without rain, so much of the applied N may not have been available to the crop until well into flowering. However, at both sites the differences between timings in final crop N content were not significant, and there was evidence of continued N uptake after flowering of up to 58 kg/ha in the the higher N rates applied at Canopy Managed timings.

The only site at which over-large canopies were achieved at flowering in 2009/10 was Rosemaund, which averaged GAI 5.45 for the Conventional N timings (N rate 240 kg N/ha) compared to 4.70 for the Canopy Managed timings. Although the difference in GAI was not significant, Canopy Management did significantly reduce the amount of light intercepted by the canopy. This led to a small, but non-significant yield increase of 0.2 t/ha for Excalibur (Table 101). At Thornholme there was a significant reduction in GAI and the amount of light intercepted and reflected by the canopy due to the Canopy Management strategy. These effects did not increase yield because the GAI for

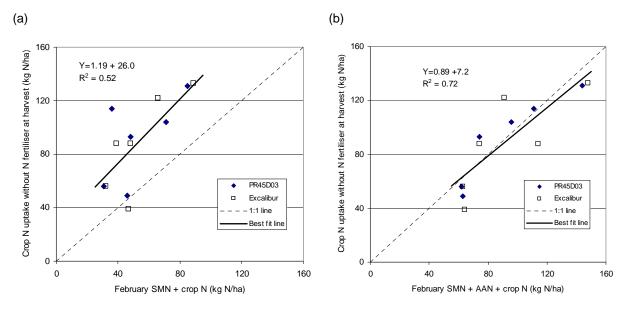
the Conventional N timings were less than the optimum. Importantly Canopy Management did not reduce yield. The small canopy at Terrington meant that the crop did not respond to Canopy Management.

Table 101. 2009/10 experiment summary.

	Terrington		Thornh	Thornholme		aund	
Jan/Feb soil mineral N (kg/ha)	18	18		38			
Jan/Feb additionally available N (kg/ha)	31		59		25	25	
Jan/Feb crop N content (kg/ha)	13		49		54		
Jan/Feb GAI	0.24		0.9		1.12		
N timing strategy	Conv	СМ	Conv	СМ	Conv	СМ	
Optimum N rate (kg/ha)	228	228	215	215	176	176	
N rate at 1 st split (end Feb/early March)	114	60	107	40	88	40	
N rate at 2 nd split (early stem ext.)	114	168	108	107	88	136	
N rate at 3 rd split (yellow bud to mid flower)	0	0	0	68	0	0	
Yield at opt N Excalibur (t/ha)	3.47	3.47	4.98	4.85	4.78	4.98	
Yield at opt N Excalibur + Folicur (t/ha)	3.73	3.70	5.20	5.17	5.54	5.61	
Yield at opt N PR45D03 (t/ha)	3.50	3.64	5.00	5.07	4.89	4.78	
Yield at opt N PR45D03 + Folicur (t/ha)		3.83	4.98	5.08	5.52	5.51	


Conv – conventional N timing strategy; CM – Canopy Managed N timing strategy.

Additionally available N (AAN) is an estimate of the amount of N that will become available for crop uptake through mineralisation between February and crop maturity.


Several components of the Canopy Management principles developed by Berry and Spink (2009) and Lunn et al. (2001) and used in the GrowHow 'N-Calc' fertiliser recommendation system were shown to be applicable for semi-dwarf varieties as described below. The requirement for the crop to take up 50 kg N/ha to build each unit of GAI was shown to hold true for both standard height and semi-dwarf hybrids (Figure 3). At flowering PR45D03 produced a larger GAI than Excalibur at two sites with no differences at the other four sites. PR45D03 intercepted more light than Excalibur at one site, with no difference at the other sites. The relatively small differences in GAI and light interception between the varieties indicates that the optimum GAI for intercepting the majority of incoming light will be the same for both varieties. Across the six sites there were no significant differences for the efficiency with which the two varieties took up the soil mineral N (SMN) that was measured in February or the applied fertiliser N. There was a strong positive relationship between the amount of N taken up by the crop in the absence of fertiliser and the amount of SMN and crop N measured in February (Figure 4a). It was apparent that the unfertilised crops generally took up more N than the combined SMN plus crop N measured in February. On average the crops took up an additional 36 kg N/ha. Previous research has shown that the amount of N taken up by unfertilised crops was similar to the amount of SMN plus crop N (Berry and Spink, 2009). The

difference between these two studies is likely to have been caused by the experimental sites in this current study having soils with a greater potential for mineralisation between February and crop maturity. When an estimate of the amount of mineralisation (referred to as additionally available N - AAN) was added to the February SMN and crop N, then the prediction of the amount of N taken up by the unfertilised crops was improved (Figure 4b). The fertiliser uptake efficiency was calculated for the 240 kg N/ha fertiliser rate by dividing the difference in crop N uptake at crop maturity between the unfertilised crop and the crop fertilised at 240 kg N/ha by the fertiliser rate. This showed that across the six sites there was no significant difference in fertiliser uptake efficiency between the variety types and the average uptake efficiency was 47%. This fertiliser uptake efficiency is lower than found by Berry and Spink (2009) who estimated an average uptake efficiency of 57% at the N rates closest to the economic optimum N rate (average of 169 kg N/ha). There are two possible reasons for this difference; 1) in this study the N uptake efficiency was calculated for 240 kg N/ha which was, on average, 19 kg N/ha greater than the economic optimum N rate, and it is known that N uptake efficiency decreases at higher N rates, 2) the very dry spring in 2010 reduced N uptake efficiency. The average uptake efficiency in 2010 was 41% compared with 53% in 2009.

This report indicates that both the standard height and semi-dwarf variety types take up N with similar rates of efficiency, require the same amount of N to build each unit of GAI and have a similar optimum GAI target. This indicates that both variety types will require the same amount of fertiliser to achieve optimum GAI and supports the observation that there was no difference in the economic N rates between the variety types.

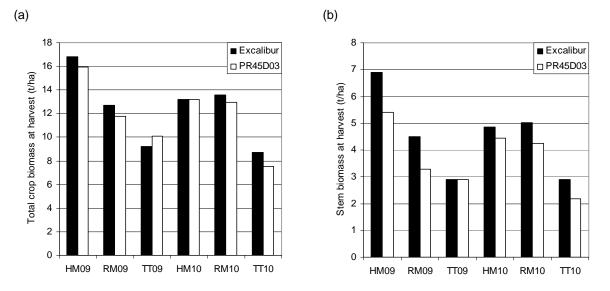

Figure 3. The relationship between Crop N content (kg N/ha) and Green Area Index (GAI) of varieties PR45D03 and Excalibur when measured in February and at mid flowering (Nil N and 240 kg N/ha) in the growing seasons 2008/9 and 2009/10. The bold line is the fitted relationship and the dotted line is the expected relationship (1 unit GAI = 50 kg N/ha).

Figure 4. Relationship between a) February SMN + crop N and the amount of N taken up by unfertilised crops by harvest and b) February SMN + additionally available N (due to mineralisation + crop N and the amount of N taken up by unfertilised crops by harvest. Data from each of the 6 experiments carried out within the study.

3.4.3. Crop biomass, N uptake and N residues following harvest

At harvest there was no difference in total crop biomass measured at 240 kg N/ha between Excalibur and PR45D03 at any of the sites (Figure 5). Across all sites the average crop biomass for Excalibur was 12.4 t/ha compared with 11.9 t/ha for PR45D03. PR45D03 had an average stem biomass of 3.75 t/ha which was significantly less than Excalibur at 4.52 t/ha (Figure 5b). The reduction in stem biomass was less than may have been expected given that the height of PR45D03 was on average 33 cm (25%) shorter. Longer branches from the bottom of the semi-dwarf main stems may have partially compensated for the shorter main stems. There was no significant difference in the biomass of the pod walls with both varieties averaging 4.01 t/ha across the six sites.

Figure 5. a) Total biomass at harvest; b) stem biomass at harvest. All measurements for the 240 kg N/ha treatment without Folicur. HM – High Mowthorpe, RM – Rosemaund, TT – Terrington.

There was no difference between Excalibur and PR45D03 in the total amount of N taken up by the crop at harvest, with both varieties taking up on average 202 kg N/ha at a fertiliser rate of 240 kg N/ha across the six sites. PR45D03 took off 10 kg/ha less N in the seed at High Mowthorpe in 2008/9, but there were no variety differences in N offtake in any of the other five experiments. On average, both varieties took off 123 kg N/ha in the seed and both left a similar amount of N in the crop residues of approximately 75 kg N/ha. At two sites the stem and pod residues of PR45D03 had a significantly greater tissue N concentration than Exalibur which compensated for the lower stem biomass in terms of the N residues following harvest. These results indicate that the N residues following semi-dwarf oilseed rape are not different from standard height varieties.

3.4.4. Folicur

Effects of Folicur differed between the two seasons. In 2008/9 Folicur at 0.5 l/ha increased yield of both Excalibur and PR45D03, on average, by 0.15 t/ha at Terrington but did not affect yield at High Mowthorpe, and reduced the yield of PR45D03 by 0.51 t/ha and the yield of Excalibur by 0.16 t/ha at Rosemaund. In contrast, in 2009/10, Folicur application significantly increased yield at all three sites, by an average of 0.22 t/ha at Terrington, 0.67 t/ha at Rosemaund, and at Thornholme it increased the yield of Excalibur by 0.27 t/ha and had no effect on PR45D03. It should be recognised that all experimental sites, apart from Rosemaund 2009/10, had a GAI in January/February of less than one (the threshold above which spring PGRs are normally recommended). In 2008/9 the average GAI in January/February across the three sites was 0.30 and in 2009/10 the average GAI was 0.75. The greater GAI in 2009/10 helps to explain the greater yield increases in this season. The yield responses to Folicur were not affected by use of Canopy Managed N timings compared with Conventional N timings.

The greatest yield response to Folicur was at Rosemaund in 2009/10. This effect was likely to be because this site had the largest GAI in January/February (1.12) and at flowering (4.7 to 5.5) which was significanty above the optimum GAI at flowering of 3.5. The significant yield increase for PR45D03 at this site indicates that semi-dwarfs will respond positively to PGRs when canopies are large. The most likely mechanism for the yield increases was the significant reduction in light reflection from the flowers that was caused by Folicur. This would have allowed more light to reach the photosynthetic tissues, thereby allowing more photosythesis during the critical period when the number of seeds were set. Folicur also reduced the amount of leaning at Rosemaund, particularly in Excalibur, although the relatively low levels of leaning which occurred were not likely to have influenced yield significantly. It is worth noting that this reduction in leaning occurred in the absence of any height response to Folicur, at Rosemaund or at the other sites in 2009/10, which indicates that Folicur may have reduced leaning by affecting the architecture of the canopy.

Disease was minimised in all experiments by using fungicides without PGR activity. However, it is impossible to rule out the possibility that part of the yield increases from Folicur were through improved disease control.

The yield reduction following Folicur application at Rosemaund in 2008/9, was likely to have occurred because even without the PGR the GAI at flowering was below the optimum for yield, and Folicur reduced this yet further causing a reduction in light interception during the seed setting period and consequently yield. This hypothesis is supported by the observation that the reduction in yield was due to a reduction in seed number, rather than seed size. It should be noted that the GAI at the start of stem extension was 0.57 and PGRs would not normally be recommended for crops with a GAI of less than 1.

In five of the six experiments, Folicur treatment reduced the fraction of light intercepted by the flowers and/or reduced the amount of light reflected by the flowers of the standard height and semi-dwarf varieties. This shows that Folicur reduced the size of the flower layer, which for overlarge canopies will help the crop set more seeds/m². This study has shown semi-dwarfs have the potential to produce over-large canopies which indicates that they will respond positively to PGRs.

3.5. Conclusions

- Across the six experiments the semi-dwarf variety PR45D03 had an avarge height of 101 cm compared with 134 cm for Excalibur.
- It was shown that Excalibur and PR45D03 had the same economic optimum N rates and produced similar yields.
- Canopy Management N timings gave the same yield as earlier Conventional N timings for the semi-dwarf and standard height varieties.
- Similar to standard height varieties, semi-dwarfs were shown to also have the potential to
 produce over-large canopies at flowering which would reduce the number of seeds set and
 yield potential. This indicates that Canopy Management N timings could increase the yield
 of semi-dwarfs when they have canopies following winter that are at risk to becoming overlarge.
- It was shown that the Canopy Management principles used for standard height varieties
 also apply for semi-dwarf varieties. These include a similar soil and fertiliser uptake
 efficiency, the crop must take up 50 kg N/ha to build each unit of GAI and a similar optimum
 GAI at flowering.
- The experiments provided further evidence that the Canopy Management approach has been successfully adapted for crops with small canopies following winter, such that there is no yield penalty from delaying some of the N until yellow bud / early flowering.
- The semi-dwarf variety took up a similar amount of N and contained a similar amount of N
 in the seed to the standard height variety. There is therefore no evidence that the N
 residues remaining after harvest differ for semi-dwarfs.
- There was no difference in N use efficiency between the semi-dwarf and standard height variety as both varieties yielded similarly at a range of N rates including the economic optimum rate.
- At harvest, the overall biomass of PR45D03 averaged 11.9 t/ha compared to 12.4 t/ha for Excalibur. This difference was not statistically significant.
- In the one experiment where an over-large canopy was produced it was shown that Folicur significantly increased the yield of the semi-dwarf variety, which indicates that semi-dwarfs will respond positively to PGRs when canopies are large.
- Folicur was shown to increase seeds/m² by increasing the amount of light that penetrated through the flowering layer.
- There may be an opportunity to maximise yields of PR45D03 by focusing on seed filling conditions. PR45D03 generally produced higher seed numbers than Excalibur, but lower seed weight.

4. REFERENCES

- Anon. (2010) Fertiliser manual (RB209) 8th Edition. pp. 252. Defra, London
- Berry, P.M. and Spink, J.H. (2009). 'Canopy Management' and late nitrogen applications to improve yield of oilseed rape. Project Report No. 447, pp. 213. HGCA, Warwickshire.
- Lunn, G. D., Spink, J., Stokes, D. T., Wade, A., Clare, R. W. and Scott, R. K. (2001). *Canopy Management in winter oilseed rape*. Project Report No. OS49, pp. 86. HGCA, London.
- Schjoerring, J.K., Bock, J.G.H., Gammelvind, L., Jensen, C.R. and Morgensen, V.O. (1995).

 Nitrogen incorporation and remobilisation in different shoot components of field grown winter oilseed rape as affected by rate of nitrogen application and irrigation. Plant and Soil 177, 255-264.

APPENDIX 1. SITE DETAILS 2008/9

Site	ADAS Terrington				
Field name:	Pips Heavy Field				
Soil texture:	Silty clay loam				
Sowing date	30/09/08				
Harvest date:	04-05-08-09				
Previous cropping					
Harvest year					
2008	W Wheat				
2007	Peas				
2006	W Wheat				
Soil analyses 23/10/08	pH 8.1				
	P 14.6 mg/l (index 1)				
	K 264 mg/l (index 3)				
	Mg 128 mg/l (index 3)				
	OM 3.1				
Fertilisers (N, P, K, S)					
09/03/09 (blocks 1-2)	1 st N split				
11/03/09 (blocks 3-4)					
03/04/09	2 nd N split				
15/04/09	3 rd N split				
15/04/09	Kieserite 75 kg/ha + TSP 120 kg/ha				
Herbicides					
20/11/08	Aramo 1.0 l/ha				
Fungicides					
20/11/08	Capitan 25 0.6 I/ha				
14/04/09	Folicur 0.5 l/ha to half plots				

Site	High Mowthorpe
Field name:	Home Flats, Towthorpe
Soil texture:	Silty clay loam over chalk
Sowing date	26/09/08
Previous cropping	
Harvest year	
2008	W Barley
2007	W Wheat
2006	W Oilseed rape
Soil analyses Nov 08	
	pH 7.9
	P 24.8 mg/l (index 2)
	K 147 mg/l (index 2-)
	Mg 50 mg/l (index 2)
	OM 3.6%
Fertilisers (N, P, K, S)	
11-12/03/09	1 st N split
01/04/09	Kieserite 150 kg/ha
09/04/09	2 nd N split
12/05/09	3 rd N split
Herbicides	
04/09/08	Shadow (DOSE)
20/09/2008	Trifluralin 2.0 l/ha
04/11/2008	Kerb 1.8 l/ha
22/03/2009	Galera 0.4 I/ha
Lancatton ellera d'alda e	
Insect/molluscicides	Hollmonk 0.05 l/ba
20/09/2008	Hallmark 0.05 l/ha
04/11/2008	Alert 0.1 l/ha
03/05/2009	Hallmark 0.08 l/ha
Fungicides	
10/04/09	Harvesan 0.4 l/ha
23/04/09	Folicur 0.5 I/ha to half plots
03/05/09	Compass 2.4 I/ha
03/03/09	Oumpass 2.4 I/IIa

Site	ADAS Rosemaund, Fawley Court
Field name:	Brinkley Hill South
Soil texture:	Sandy loam
Sowing date	15/09/08
Harvest date:	03/08/09 and 06/08/09
Previous cropping	
Harvest year	
2008	W Wheat
2007	W Oats
2006	W Wheat
Soil analyses	
	pH 6.3
	P 25.4 mg/l (index 2)
	K 122 mg/l (index 2-)
Fertilisers (N, P, K, S)	
15/01/09	0:10:40 200 kg/ha
13/03/09	Kieserite 151 kg/ha
25/02/09	First N split
20/03/09	Second N split
08/04/09	Third N split
Herbicides	
29/11/09	Kerb Flo 2.0 l/ha
29/11/09	Reib Fio 2.0 Mia
Fungicides	
29/11/08	Harvesan 0.75 l/ha
20/04/09	Amistar 0.7 I/ha + Proline 0.5 I/ha
04/04/09	Folicur 0.5 l/ha to half plots

APPENDIX 2. SITE DETAILS 2009/10

Site	ADAS Terrington				
Field name:	Larges, Edgars				
Soil texture:	Silty clay loam				
Sowing date	25/08/09				
Harvest date:	09/08/10				
Previous cropping					
Harvest year					
2009	W Wheat				
2008	Peas				
2007	W Wheat				
Soil analyses	pH 8.2				
	P 8.0 mg/l (index 0)				
	K 231 mg/l (index 2+)				
	Mg 96 mg/l (index 2)				
	OM 2.6%				
Fertilisers (N, P, K, S)	N as applied per protocol				
10/03/2010	P.Curser (P) @1.0 l/ha				
Herbicides					
13/10/2009	Aramo @ 1.0 l/ha				
	Springbok @ 2.5 II/ha				
Fungicides					
10/03/10	Capitan 25 @ 0.6 l/ha				
24/04/09	Folicur @ 0.5 I/ha to half plots				
Dessicant					
21/07/2010	Glyphosate @ 4.0 l/ha				
21/07/2010	Companion Gold 1.0 l/ha				

Site	ADAS High Mowthorpe
Field name:	Henry's Field
Soil texture:	Silty clay
Sowing date	11/09/09
Harvest date:	06/08/10
Previous cropping	
Harvest year	
2009	W Barley
2008	S Barley
2007	W Wheat
Soil analyses	pH 6.3 P 13 mg/l (index 1) K 136 mg/l (index 21) Mg 72 mg/l (index 2)
Fertilisers (N, P, K, S)	N as applied per protocol
13/04/2010	Keiserite (150 kg/ha)
Herbicides	
11/09/2009	Pilot Ultra @ 0.4 l/ha
	Shadow @ 2.3 II/ha
	Dictate @ 0.2 l/ha
Fungicides	
28/10/09	Mirage 40EC @ 0.4 I/ha
28/10/09	Bola @ 1.25 l/ha
16/4/10	Juventus @ 0.6 l/ha
24/5/10	Charisma @ 0.75 l/ha
24/5/10	Topsin WG @ 0.45 I/ha
24/04/09	Folicur @ 0.5 l/ha to half plots
Insecticides	
28/10/09	Alert @ 0.15 l/ha
16/04/10	Alert @ 0.20 l/ha
24/05/10	Mavrik @ 0.20 l/ha
Dessicant/Sealant	
19/07/2010	Glyphosate @ 4.0 l/ha
19/07/2010	Chex 0.3 l/ha

Site	ADAS Rosemaund
Field name:	Big Field Ladyridge, Fawley
Soil texture:	Sandy Clay Loam
Sowing date	31/08/09
Harvest date:	05/08/10
Previous cropping	
Harvest year	
2009	Winter Wheat
2008	Winter Barley
2007	Winter Oilseed rape
Soil analyses	
	pH 6.5
	P 29.2 mg/l (3)
	K 137 mg/l (2-)
Fertilisers (N, P, K, S)	
S	Kieserite (75kg/ha [150kg/ha product]) 10/04/10
	Ground Limestone 1t/acre
Herbicides	Oryx 3I/ha
	Cypermethrin 0.25I/ha
	Fusilade Max 0.4l/ha
Fungicides	
10/04/2010	Proline (0.4 l/ha)
26/04/2010	Proline (0.6 l/ha) + Amistar (0.5 l/ha)